论文部分内容阅读
摘要:本文介绍了近年来继电保护技术的现状与发展。对故障信息的研究和充分利用是发掘继电保护新原理的基础,计算机为充分利用故障信息提供了技术手段。小波变换、神经网络等数学方法是对故障信息的进一步利用,在继电保护领域中有着广阔的应用前景。自适应继电保护体现了继电保护高速化、智能化、一体化的发展趋势。
关键词:继电保护,故障信息,小波变换,自适应。
中图分类号: TM774 文献标识码: A 文章编号:
1、引言
继电保护是一门理论和实践并重的科学技术,与电力系统的发展息息相关。19世纪末,人们为了防止发生短路时损坏设备就已经开始利用熔断器这一中介,从而建立了过电流保护原理。1905~1908年出现电流差动保护,而自1910年起,方向性电流保护的广泛使用,更是推动了20世纪20年代初距离保护的产生。到20世纪30年代初,已经出现了快速动作的高频保护[1]。因此,从继电保护的基本原理来看,现今普遍应用的继电保护原理基本上在20年代末就已建立,迄今在保护原理方面没有出现突破性发展。从实现保护装置的硬件来看,自1901年出现感应型继电器开始,大体经历了机电式、整流式、晶体管式、集成电路式、微型计算机式等发展阶段。因此,纵观继电保护将近100年的技术发展史可以看出,虽然继电保护的基本原理早已提出,但它总是根据电力系统发展的需要,不断通过相关科学技术的最新成果得到发展和完善[2]。
2、故障信息與继电保护技术
检测故障信息、识别故障信号是继电保护的首要任务,它据此做出是否保护出口跳闸的决定。因此,故障信息的识别、处理和利用是继电保护技术发展的基础,不断发掘和利用故障信息对继电保护技术的进一步发展有着重要意义。
新型继电保护的重要理论之一是建立在暂态故障信息基础上的小电流接地保护与行波保护。而应用暂态量发展出的利用高频故障电压、电流信号的超高速继电保护原理,已经被广泛使用并获得了许多重要成果,例如利用高频故障电压信号,对串补超高压输电线路的保护设置。该保护原理是基于故障点高频故障电压信号的非联合保护,但仍具有联合保护方案的优势;该方案使用组合调谐设备和输电线路阻波器来检测保护区域内的高频暂态故障信号(频率为70~81 kHz,可根据实际情况而定),使用其带阻特性可以区分内部故障和外部故障;该装置使用一个特殊设计的信号处理器来获取高频电压信号,可以完全满足超高压串补线路对保护装置的可靠性和安全性要求[3]。
总之,为了满足电力系统快速发展的需求,故障信息的发掘、提取与利用是继电保护技术发展的重要课题。新算法的引入为高频暂态信号的应用提供了可能性,但行波保护尚未成熟,仍存在一些有待探讨的问题。
3、计算机在继电保护领域中的应用
计算机在继电保护中的应用可以分为以下两类:
a. 计算机的出现,使许多原有理论得以最大程度得实现。例如早期就有人提出神经网络在电力系统中的应用问题,但训练神经网络所需的庞杂计算量以及传统计算方法对继电保护快速性的约束都限制了该理论的实际应用。而计算机的高速运算能力却轻松解决了这一问题。
b. 借助计算机开发的新理论与新技术,继电保护领域迎来了新一轮的革新。这其中较为成功的案例就是建立在暂态量基础上的、充分利用了计算机特性的行波保护原理。
虽然计算机在继电保护中的作用举足轻重,但其应用仍然存在一些问题。目前研究开发的多为通用型和用于自动控制系统的芯片,尚无继电保护装置专用芯片。由于电力系统继电保护对实时性和可靠性有着近乎苛刻的要求,开发微机型继电保护装置的专用芯片是计算机在继电保护领域中得到进一步发展应用所不可或缺的基础。
4、小波变换与继电保护
近几十年来,小波变换理论在工程界引起了极大反响,它被认为是傅里叶变换的重大发展,目前已在宇航、通信、遥感技术、数值分析等领域中被广泛应用。
众所周知,继电保护的首要任务是正确检测出故障。而电力系统中出现故障时通常都伴有奇异性或突变性,这对继电保护提出了更高的要求。为了增大输电线传输容量和提高系统稳定性,减小继电保护装置的动作时间是一种简单有效的措施。目前,利用小波变换的奇异性检测及模极大值理论已提出了实现故障起动和选相的方法,这种方法的主要特点就是快速性和可靠性。小波变换分析的应用能为快速可靠地检出行波信息提供有效保障,基于小波变换的继电保护装置必将在电力系统发挥其巨大作用。
5、自适应继电保护
自适应继电保护是20世纪80年代提出的一个较新的研究课题,它是根据电力系统运行情况和故障状态的变化,实时改变保护原理、性能、特性、定值的一种技术方法。自适应原理在继电保护领域的主要应用有自适应重合闸、自适应馈线保护、对串补输电线路的自适应保护以及自适应行波保护。下面以反时限过电流保护为例说明自适应过电流保护的基本原理。
在最大负荷电流IHmax的条件下,过电流保护的整定值为:
IDz= KIHmax(1)
根据式(1)可选用一条反时限特性,表示为:
t = f(I) (2)
当线路故障时,如果短路电流小于式(1)的定值,按上述特性动作的过电流保护将不能检出故障,但通过对负荷电流的实时监视,便可根据实际负荷电流IH自动改变定值,使保护具有更灵敏的另一条反时限特性:
t =φ (I)(3)
运用自适应原理的继电保护能克服同类型传统继电保护中长期存在的问题,它是继电保护智能化的一个重要组成部分。计算机为自适应继电保护的进一步发展提供了良好的技术支持。
总体来讲,新型继电保护的发展趋势是高速化、智能化与一体化。对故障信息的研究与利用是发掘继电保护新原理的基础;计算机为充分利用故障信息提供了技术支持;新算法为继电保护的进一步发展提供了拓展空间;而自适应保护则是继电保护智能化发展的趋势。
参考文献
[1] 葛耀中. (1996). 新型继电保护与故障测距原理与技术[M]. 西安: 西安交通大学出版社.
[2] 葛耀中. (1998). 继电保护技术的新进展[J]. 继电器, 26(1): 1-7.
[3] Jayasinghe, J. A., Aggarwal, R. K., & Johns, A. T. (1998). A novel non-unit protection for series compensated EHV transmission lines based on fault generated high frequency voltage signals [J]. IEEE Trans. on Power Delivery, 13(4): 405-413.
关键词:继电保护,故障信息,小波变换,自适应。
中图分类号: TM774 文献标识码: A 文章编号:
1、引言
继电保护是一门理论和实践并重的科学技术,与电力系统的发展息息相关。19世纪末,人们为了防止发生短路时损坏设备就已经开始利用熔断器这一中介,从而建立了过电流保护原理。1905~1908年出现电流差动保护,而自1910年起,方向性电流保护的广泛使用,更是推动了20世纪20年代初距离保护的产生。到20世纪30年代初,已经出现了快速动作的高频保护[1]。因此,从继电保护的基本原理来看,现今普遍应用的继电保护原理基本上在20年代末就已建立,迄今在保护原理方面没有出现突破性发展。从实现保护装置的硬件来看,自1901年出现感应型继电器开始,大体经历了机电式、整流式、晶体管式、集成电路式、微型计算机式等发展阶段。因此,纵观继电保护将近100年的技术发展史可以看出,虽然继电保护的基本原理早已提出,但它总是根据电力系统发展的需要,不断通过相关科学技术的最新成果得到发展和完善[2]。
2、故障信息與继电保护技术
检测故障信息、识别故障信号是继电保护的首要任务,它据此做出是否保护出口跳闸的决定。因此,故障信息的识别、处理和利用是继电保护技术发展的基础,不断发掘和利用故障信息对继电保护技术的进一步发展有着重要意义。
新型继电保护的重要理论之一是建立在暂态故障信息基础上的小电流接地保护与行波保护。而应用暂态量发展出的利用高频故障电压、电流信号的超高速继电保护原理,已经被广泛使用并获得了许多重要成果,例如利用高频故障电压信号,对串补超高压输电线路的保护设置。该保护原理是基于故障点高频故障电压信号的非联合保护,但仍具有联合保护方案的优势;该方案使用组合调谐设备和输电线路阻波器来检测保护区域内的高频暂态故障信号(频率为70~81 kHz,可根据实际情况而定),使用其带阻特性可以区分内部故障和外部故障;该装置使用一个特殊设计的信号处理器来获取高频电压信号,可以完全满足超高压串补线路对保护装置的可靠性和安全性要求[3]。
总之,为了满足电力系统快速发展的需求,故障信息的发掘、提取与利用是继电保护技术发展的重要课题。新算法的引入为高频暂态信号的应用提供了可能性,但行波保护尚未成熟,仍存在一些有待探讨的问题。
3、计算机在继电保护领域中的应用
计算机在继电保护中的应用可以分为以下两类:
a. 计算机的出现,使许多原有理论得以最大程度得实现。例如早期就有人提出神经网络在电力系统中的应用问题,但训练神经网络所需的庞杂计算量以及传统计算方法对继电保护快速性的约束都限制了该理论的实际应用。而计算机的高速运算能力却轻松解决了这一问题。
b. 借助计算机开发的新理论与新技术,继电保护领域迎来了新一轮的革新。这其中较为成功的案例就是建立在暂态量基础上的、充分利用了计算机特性的行波保护原理。
虽然计算机在继电保护中的作用举足轻重,但其应用仍然存在一些问题。目前研究开发的多为通用型和用于自动控制系统的芯片,尚无继电保护装置专用芯片。由于电力系统继电保护对实时性和可靠性有着近乎苛刻的要求,开发微机型继电保护装置的专用芯片是计算机在继电保护领域中得到进一步发展应用所不可或缺的基础。
4、小波变换与继电保护
近几十年来,小波变换理论在工程界引起了极大反响,它被认为是傅里叶变换的重大发展,目前已在宇航、通信、遥感技术、数值分析等领域中被广泛应用。
众所周知,继电保护的首要任务是正确检测出故障。而电力系统中出现故障时通常都伴有奇异性或突变性,这对继电保护提出了更高的要求。为了增大输电线传输容量和提高系统稳定性,减小继电保护装置的动作时间是一种简单有效的措施。目前,利用小波变换的奇异性检测及模极大值理论已提出了实现故障起动和选相的方法,这种方法的主要特点就是快速性和可靠性。小波变换分析的应用能为快速可靠地检出行波信息提供有效保障,基于小波变换的继电保护装置必将在电力系统发挥其巨大作用。
5、自适应继电保护
自适应继电保护是20世纪80年代提出的一个较新的研究课题,它是根据电力系统运行情况和故障状态的变化,实时改变保护原理、性能、特性、定值的一种技术方法。自适应原理在继电保护领域的主要应用有自适应重合闸、自适应馈线保护、对串补输电线路的自适应保护以及自适应行波保护。下面以反时限过电流保护为例说明自适应过电流保护的基本原理。
在最大负荷电流IHmax的条件下,过电流保护的整定值为:
IDz= KIHmax(1)
根据式(1)可选用一条反时限特性,表示为:
t = f(I) (2)
当线路故障时,如果短路电流小于式(1)的定值,按上述特性动作的过电流保护将不能检出故障,但通过对负荷电流的实时监视,便可根据实际负荷电流IH自动改变定值,使保护具有更灵敏的另一条反时限特性:
t =φ (I)(3)
运用自适应原理的继电保护能克服同类型传统继电保护中长期存在的问题,它是继电保护智能化的一个重要组成部分。计算机为自适应继电保护的进一步发展提供了良好的技术支持。
总体来讲,新型继电保护的发展趋势是高速化、智能化与一体化。对故障信息的研究与利用是发掘继电保护新原理的基础;计算机为充分利用故障信息提供了技术支持;新算法为继电保护的进一步发展提供了拓展空间;而自适应保护则是继电保护智能化发展的趋势。
参考文献
[1] 葛耀中. (1996). 新型继电保护与故障测距原理与技术[M]. 西安: 西安交通大学出版社.
[2] 葛耀中. (1998). 继电保护技术的新进展[J]. 继电器, 26(1): 1-7.
[3] Jayasinghe, J. A., Aggarwal, R. K., & Johns, A. T. (1998). A novel non-unit protection for series compensated EHV transmission lines based on fault generated high frequency voltage signals [J]. IEEE Trans. on Power Delivery, 13(4): 405-413.