论文部分内容阅读
基于空间距离计算的空间自相关权重系数是经典空间插值方法的核心,然而由于空间距离与自相关权重之间复杂的非线性关系,反距离权重(IDW)法和克里金(Kriging)法等传统空间插值方法,在求解权重精准解时存在一定的局限性。由此,利用神经网络超强的非线性拟合能力,通过融合神经网络与空间自回归方法,建立了空间自回归神经网络(SARNN)模型,实现了空间自相关权重的精准计算并将其应用于空间插值研究。为验证SARNN模型的有效性和可行性,采用两类模拟数据及海洋环境数据进行交叉验证,并与IDW法和Kriging法