论文部分内容阅读
在稀疏分解过程中,字典模型构建的结果会直接影响稀疏分解的效果。为获得结构更好的字典,提出了一种基于交替方向乘子法(ADMM)的字典学习方法,在字典学习过程中采用交替方向乘子法逐个更新字典中原子,得到的字典具有良好的结构。将该字典学习方法应用到滚动轴承振动信号稀疏分解中,能获得更快的字典学习速度和更好的稀疏分解效果。与K-SVD字典学习方法相比较,证明了所提方法在轴承信号稀疏分解中的优越性。