论文部分内容阅读
研究自动组卷优化问题,由于题库组卷的随机性,难度很大。在自动组卷研究中,遗传算法(GA)容易出现早熟、收敛速度慢等问题,为了快速可信地组卷,提出一种基于改进遗传算法的智能组卷算法(IGA)。IGA算法在传统遗传算法的基础上,用符合组卷问题特点的实数编码、条件初始种群和分段交叉和变异算子来保证种群的多样性,防止早熟现象,采用加权误差的适应度函数加快收敛速度。通过进行仿真,结果表明,IGA相对于自适应遗传算法和标准遗传算法,提高了组卷有效性、稳定性和计算效率,能有效解决自动组卷问题。