论文部分内容阅读
提出一种基于粒子群算法优化BP网络的权值调整新方法.该算法在基本BP算法的误差反传调整权值的基础上,再引入粒子群算法的权值修正,从而建立了基于粒子群算法优化的BP网络新模型.此模型不仅可以克服基本BP算法收敛速度慢和易陷入局部极值的局限,而且模型的精度较高,较好地提高了BP网络学习能力与泛化能力.将新模型应用于4个典型复杂函数的仿真实验,并与基本BP模型、基于遗传算法优化的BP网络模型(GA-BP)和传统的粒子群优化前向BP网络模型(PSO-BP前传)的仿真实验结果进行分析比较.仿真实例表明新PSO-BP