论文部分内容阅读
针对高光谱图像分类中没有考虑高光谱数据地物种类复杂、数据规模较大以及样本分布不规则而导致的少数类分类精度较低,分类器鲁棒性差的问题,提出一种基于稀疏多核最小二乘支持向量机(Multiple Kernel Least Squares Support Vector Machine,MK-LSSVM)的高光谱图像不平衡分类方法。该方法先用k均值聚类将多数类的训练样本分为k类,然后利用采样技术对每一群组中的样本进行处理与少数类样本均衡,最后建立最MK-LSSVM分类器。该方法对于MK-LSSVM不稀疏的问题