Evaluation of the Tropical Variability from the Beijing Climate Center's Real-Time Operational

来源 :Advances in Atmospheric Sciences | 被引量 : 0次 | 上传用户:Shauphei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center(BCC_GODAS2.0) has been run daily in a pre-operational mode.It spans the period 1990 to the present day.The goal of this paper is to introduce the main components and to evaluate BCC_GODAS2.0 for the user community.BCC_GODAS2.0 consists of an observational data preprocess,ocean data quality control system,a three-dimensional variational(3DVAR) data assimilation,and global ocean circulation model[Modular Ocean Model 4(MOM4)].MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction.Satellite altimetry data,SST,and in-situ temperature and salinity data are assimilated in real time.The monthly results from the BCC_GODAS2.0 reanalysis are compared and assessed with observations for 1990-2011.The climatology of the mixed layer depth of BCC-GODAS2.0 is generally in agreement with that of World Ocean Atlas 2001.The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales.Performances in predicting variations in the SST using BCC_GODAS2.0 are evaluated.The standard deviation of the SST in BCC-GODAS2.0 agrees well with observations in the tropical Pacific.BCC-GODAS2.0 is able to capture the main features of E1 Nino Modoki I and Modoki Ⅱ,which have different impacts on rainfall in southern China.In addition,the relationships between the Indian Ocean and the two types of E1 Nino Modoki are also reproduced. The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC_GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this paper is to introduce the main components and to evaluate BCC_GODAS2.0 for the user community.BCC_GODAS2.0 consists of an observational data preprocess, ocean data quality control system, a three-dimensional variational (3DVAR) data assimilation, and global ocean circulation model [Modular Ocean Model 4 ( MOM4)]. MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction. Satellite altimetry data, SST, and in-situ temperature and salinity data are assimilated in real time. The monthly results from the BCC_GODAS2.0 reanalysis are compared and assessed with observations for 1990-2011. The climatology of the mixed layer depth of BCC-GODAS 2.0 is generally in agreement with that of World Ocean Atlas 2001. Modeled sea level variations in the tropical Pacific are c onsistent with observations from satellite altimetry on interannual to decadal time scales. Performances in predicting variations in the SST using BCC_GODAS2.0 are evaluated. standard deviation of the SST in BCC-GODAS2.0 agrees well with observations in the tropical Pacific. BCC- GODAS 2.0 is able to capture the main features of E1 Nino Modoki I and Modoki II, which have different impacts on rainfall in southern China. In addition, the relationships between the Indian Ocean and the two types of E1 Nino Modoki are also reproduced.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
The resistivity experimental measurements of core samples drilled from low permeability reservoirs of Ordos Basin,Northwest China,illustrate that the cementatio
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
众所周知,我国是一个人口大国,但却不是一个人力资源强国,人均受教育程度、拥有的自主知识产权、影响经济社会发展的关键技术等方面与我国社会发展的需要还不相适应.因此,作
In this study,content and distribution of organic matters(OM)and lipid biomarkers in surface sediments from northern South China Sea(SCS)were identified to reve
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
To further explore enthalpy-based sea-ice assimilation, a one-dimensional(1D) enthalpy sea-ice model is implemented into a simple pycnocline prediction model. T
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊