论文部分内容阅读
目的使用机器学习开发并验证一种基于大脑白质的影像组学标签用于预测帕金森病(PD)的早期阶段。方法从PD进展标记倡仪数据库(PPMI)中收集340例受检者的影像和临床资料,包括171例健康对照人群和169例PD患者。所有受试者按7:3随机分为训练组237例和测试组103例。在训练集的基线MRI中,切割出三维大脑白质以提取每例患者的影像组学特征,进行降维后使用机器学习方法构建影像组学标签。利用ROC曲线评估影像组学标签在训练组和测试组中的诊断效能,用Hosmer-Lemeshow检验分析标签的拟合优度。将所有