论文部分内容阅读
借助电子鼻检测存储60、120、180、240、300、360d的黄山毛峰茶香气信息,根据电子鼻各传感器响应曲线变化特点,选取出1组能够表征不同香气信息的基本特征变量,分别采用主成分回归(PCR)、偏最小二乘回归(PLS)和BP神经网络(BPNN)方法,建立茶叶存储时间的预测模型。测试样本集对3种预测模型的检验结果表明:PCR、PLS、BPNN模型的预测标准误差分别为10.05、6.04、3.21d;最大预测相对误差分别为11.03%、7.02%、5.89%;平均预测相对误差分别为6.73%、4.74%、