论文部分内容阅读
针对传统协同过滤算法中存在的数据稀疏性问题,提出一种融合改进加权Slope One的协同过滤算法.该算法首先使用改进后的Slope One算法计算出的评分预测值,对初始的用户-评分矩阵进行有效填充,然后在新的评分矩阵上通过基于内存的协同过滤算法进行预测与推荐.经改进Slope One算法填充后的矩阵不仅大大降低了原始评分矩阵的稀疏性,同时也避免了回填数据过于单一的问题.在MovieLens-100k数据集上对文中算法进行仿真实验,结果表明,改进算法有效降低了MAE和RMSE,在提高推荐准确度的同时也缓解了