论文部分内容阅读
近年来,需要深入研究癌症细胞的基因表达技术正在不断增多。机器学习算法已经被广泛用于当今世界的许多领域,但是却很少应用于生物信息领域。系统研究了决策树的生成、修剪的原理和算法以及其它与决策树相关的问题;并且根据CAMDA2000(critical assessment of mieroarray data analysis)提供的急性淋巴白血病(ALL)和急性骨髓白血病(AML)数据集,设计并实现了一个基于ID3算法的决策树分类器,并利用后剪枝算法简化决策树。最后通过实验验证算法的有效性,实验结果表明利用该