论文部分内容阅读
液压系统泄漏故障原因众多,故障机理复杂,常规手段难以取得较好的故障诊断效果。提出基于小波包变换和RBF神经网络相结合的故障诊断方法。给出了基于小波包的故障特征提取方法和RBF神经网络训练算法。通过试验获取液压系统的振动信号,通过三层小波包分解,获取8个频段的能量信号,并以此作为神经网络的输入,通过网络训练,进行故障特征识别。该方法将小波包的时频分解能力和RBF神经网络的学习能力有机结合,取得了较高的故障诊断效率。