论文部分内容阅读
近年来,非负矩阵分解NMF (Nonnegative Matrix Factorization)由于其简单有效的特点,已被广泛应用于解混。由于传统的NMF只有单层结构,不能获取隐藏层的信息,其解混效果受到制约,为了研究影像的深度空谱特征,本文在深度NMF结构的基础上,提出了一种基于全变差和重加权稀疏约束的深度非负矩阵分解(RSDNMF-TV)算法。首先,使用深度NMF模型代替传统单层NMF模型,在预训练阶段进行逐层预训练,而在微调阶段减少分解误差。其次,由于丰度矩阵是稀疏的,本文在深度NMF模型中加