论文部分内容阅读
目的海马体积很小,对比度极低,传统标记融合方法选用手工设计的特征模型,难以提取出适应性好、判别性强的特征。近年来,深度学习方法取得了极大成功,基于深度网络的方法已应用于医学图像分割中,但海马结构复杂,子区较多且体积差别较大,特别是CA2和CA3子区体积极小,常见的深度网络无法准确分割海马子区。为了解决这些问题,提出一种结合多尺度输入和串行处理神经网络的海马子区分割方法。方法针对海马中体积差距较大的子区,设计两种不同的网络,结合多种尺度图像块信息,为小子区建立类别数量均衡的训练集,避免网络被极端化训练