论文部分内容阅读
当直接寻找变量x,y之间的关系显得很困难的时候,恰当地引入一个中间变量t(称之为参数),分别建立起变量x,y与参数t的直接关系,从而间接地知道了x与y之间的关系.这种数学思想即称之为“参数思想”.通过引入参数、建立参数方程求解数学问题的方法即称之为“参数方法”.参数思想和参数方法在解析几何中有着广泛的应用.比如利用参数方程可以求动点的轨迹问题,变量的范围及最值问题,定点和定值问题等等.运用参数方法的关键在于参数的选择,即如何引参(常见的引参方式有:①点参数;②斜率参数;
When looking directly for the relationship between the variables x and y is difficult, an intermediate variable t (called a parameter) is appropriately introduced to establish the direct relationship between the variables x and y and the parameter t so that it is indirectly known The relationship between x and y. This mathematical idea is called “parameter thinking.” By introducing parameters, the establishment of parametric equations to solve mathematical problems is called the “parameter method.” Parameter ideas and parameters The method has a wide range of applications in analytical geometry, such as the use of parametric equations can be used to track the trajectory of the point, the range of variables and the most value problems, fixed-point and fixed value problems, etc. The key to the use of parameter method lies in the choice of parameters Reference parameters (Common reference parameters are: ① point parameters; ② slope parameters;