论文部分内容阅读
针对径向基函数(radialbasisfunction,RBF)神经网络收敛速度慢、易于陷入局部极小点的问题,提出了基于蚁群优化算法(antcolonyoptimization,ACO)的RBF神经网络线损计算新方法。通过引入交叉和变异改进后的ACO训练BRF神经网络,使其具有神经网络广映射能力、ACO快速全局收敛以及启发式学习等特点。利用优化后的RBF神经网络算法拟合配电线路线损与特征参数之间的复杂关系,实现配电网线损计算。仿真结果表明,优化后的BRF神经网络算法的线损计算误差基本在1%以内,具有良好的