论文部分内容阅读
在对波段性网络入侵差异化特征进行提取的过程中,会出现入侵差异化特征伪装程度逐渐升高的情况,导致传统的基于敏感性数据挖掘的波段性网络入侵差异化特征提取方法,由于不能有效区分入侵特征与正常特征,无法有效实现波段性网络入侵差异化特征的有效提取,提出一种基于支持向量机的波段性网络入侵差异化特征提取模型,获取不确定入侵中波段性网络节点的差异化特征以及入侵节点,给出两种不确定入侵中波段性网络节点的差异化特征训练数据样本集,通过非线性映射将数据样本集从原空间映射到高维特征空间中,得到高维特征空间中最优线性分类面,采用支