基于多粒度文本特征表示的微博用户兴趣识别

来源 :计算机科学 | 被引量 : 0次 | 上传用户:yuhuiru871124
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微博用户兴趣发现对社交网络的个性化推荐和信息传播的正确引导具有重要意义,因此提出了一种基于多粒度文本特征表示的微博用户兴趣识别方法.首先,从主题层、词序层和词汇层3个方面对微博用户构造文本向量,利用LDA提取内容的主题特征,通过LSTM学习内容的语义特征,引入腾讯AI Lab开源词向量获取词义特征;然后,将以上3种特征向量拼接得到的多粒度文本特征表示矩阵输入CNN中,进行文本分类训练;最后,通过多端输出层实现对微博用户的兴趣识别.实验结果表明,多粒度特征表示模型的分类实验结果比单粒度特征表示模型的精准率、召回率和F1值分别提高了8%,12%和13%.基于对文本粗、细语义粒度和词粒度的综合考量,结合神经网络分类算法,多粒度特征表示模型的评价指标均优于单粒度特征表示模型.
其他文献
大数据时代,由于信息过载,用户很难从海量数据中寻找出感兴趣的内容,个性化推荐系统的诞生极好地解决了这个问题.协同过滤算法被广泛应用于个性化推荐领域,但由于模型的限制,推荐效果未能得到进一步提升.现有的基于协同过滤模型的改进方法大多都是通过引入表示学习方法来得到更好的用户表示向量和项目表示向量,或通过改进用户项目匹配函数来提升推荐能力,但此类工作都致力于从单个交互提取用户-项目交互信息.文中提出了一种多空间交互协同过滤推荐算法,将用户向量和项目向量映射到多空间,从多角度做用户-项目交互,使用两层注意力机制聚