论文部分内容阅读
为求解实际工程中的高维多模态优化问题,提出了基于动态邻域的多策略进化的量子粒子群优化算法(QPSO).针对QPSO算法存在的粒子“早熟”问题,首先定义了一种动态邻域选择机制以保持种群的“活跃性”;然后结合动态邻域机制,定义了三个不同策略的局部吸引子更新方程以保持种群进化的“多样性”.为了防止算法的进化方向不发散,对收敛到全局最优解的局部吸引子更新策略赋予了较大权重;最后为了拓展最优解空间引入了狼群优化算法中的综合评价方法.通过对不同类型的高维多模态基准测试函数的仿真实验结果表明:相比于其余四种优化算法,本