论文部分内容阅读
A mathematical model in present study has been established to investigate the effect of Rheinstahl Heraeus (RH) blow argon mode on the decarburization rate in ultra-low carbon steel refining based on the RH equipment of Shougang Qian′an Iron and Steel Co Ltd (SQISCO). The calculated results show that the increase of argon flowrate promotes the carbon elimination from argon gas bubble surface, molten steel free surface in vacuum as well as splash droplet surface, while reduces that from the interior of liquid steel. It has been found the critical turning point of flowrate ascension is at the 5th minute and the optimum blow argon flowrate in later stage is 2 100 L/min in accordance with the 2 stages argon blow mode, which have been confirmed in the commercial production in SQISCO.
A mathematical model in present study has been established to investigate the effect of Rheinstahl Heraeus (RH) blow argon mode on the decarburization rate in ultra-low carbon steel refining based on the RH equipment of Shougang Qian’an Iron and Steel Co Ltd (SQISCO The calculated results show that the increase of argon flowrate promotes the carbon elimination from argon gas bubble surface, molten steel free surface in vacuum as well as splash droplet surface, while reduces that from the interior of liquid steel. It has been found the critical turning point of flowrate ascension is at the 5th minute and the optimum blow argon flowrate in later stage is 2 100 l / min in accordance with the 2 stages argon blow mode, which have been confirmed in the commercial production in SQISCO.