论文部分内容阅读
针对非线性动态电子电路,提出一种基于神经网络的故障诊断方法。通过故障字典的建立,对电路故障响应进行预处理后得到的故障特征作为神经网络的输入,然后利用神经网络对各种状态下的特征向量进行分类决策,对故障类别进行辨识,并对电路进行了可测性分析,从而实现非线性电路的故障诊断。详细的仿真过程及结果表明,该方法有效地解决了非线性电路辨识难的问题,能较好地对故障模式进行分类,取得了满意的诊断效果。