论文部分内容阅读
摘 要: 细胞质雄性不育(Cytoplasmic male sterility,CMS)广泛存在于高等植物,CMS-S是玉米CMS的一种,其育性可以被恢复基因 Rf3完全恢复。目前Rf3 基因尚未成功克隆。本试验根据玉米CMS-S配子体不育特点,提出一种全新的同质群体构建方法,通过该方法获得群体的所有个体均携带 Rf3 恢复基因,省去田间表型鉴定工作,并可在同一世代获得足够的重组个体。该方法可直接用种子提取基因组DNA,大大提高 Rf3 定位的效率。利用该同质定位群体,将恢复基因 Rf3 精细定位到分子标记A165与CG2之间,参照玉米自交系B73的基因组序列,两个标记之间的物理距离约为1.4 Mb。
关键词: 玉米;细胞质雄性不育;S型;恢复基因
中图分类号: S513.035.3 文献标识号:A 文章编号: 1001 - 4942(2014)08 - 0001 - 05
Fine Mapping of Fertility Restorer Gene Rf3 of S-Type Cytoplasmic
Male Sterility and Candidate Gene Prediction in Maize
Li Peng1, Xiao Senlin2, Wang Shuxia2, Liu Juan2, Zhao Xianrong2, Chen Huabang2*
(1.College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, China;
2.Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/
State Key Laboratory of Plant Cell and Chromosome Engineering, Beijing 100101, China)
Abstract Cytoplasmic male sterility (CMS) is widespread in higher plants. CMS-S, one of the major CMS in maize, can be restored by Rf3 gene which has not been cloned yet. Based on the gametophytic nature of maize CMS-S, a novel homogeneous population constructing method was put forward for mapping. All the individuals obtained through this method carried the Rf3 gene making the phenotype identification unnecessary, and enough recombinants could be obtained in the same generation. Using this method, the DNA extracted from seeds could be used directly, so the efficiency of Rf3 mapping could be improved greatly. With this homogeneous population, Rf3 gene could be fine mapped in the locus between molecular marker A165 and CG2. The physical distance between the two SSR markers was about 1.4 Mb according to the genome sequence of maize inbred line B73.
Key words Maize; Cytoplasmic male sterility (CMS); S type; Restorer gene
细胞质雄性不育是指雄性器官不能产生可育花粉而雌性器官正常发育的母系遗传现象,广泛存在于高等植物中[1]。我国第一大粮食作物玉米是一种典型的异花授粉植物,杂种优势明显。早在20世纪60年代,基于细胞质雄性不育系的三系法制种技术已经在玉米杂交种生产中得到广泛应用。通过三系法进行制种,既能省去人工去雄的繁琐工作,又能提高种子纯度和产量。玉米细胞质雄性不育可分为三种类型,分别被命名为:CMS-T(Texas)、CMS-S(USDA)、CMS-C(Charrua)。1970年,与玉米T型不育基因紧密连锁的玉米小斑病大面积爆发,造成玉米大面积减产,使T型不育系的应用受到很大限制。目前,生产上主要利用S型和C型不育系进行制种。S型不育系因其亚种较多、不易感染单一的病原生理小种等优势而在生产中得到广泛应用,其育性可以被恢复基因 Rf3 完全恢复。
在玉米CMS-S细胞质中,线粒体内比正常个体多两条线性的质粒S1、S2[2],而在线粒体基因组嵌合基因 orf355/orf77 上游,存在一段与线性质粒S1和S2同源的末端反向重复区(Terminal inverted repeats,TIRs)[3]。TIRs与S1和S2重组后,环化的线粒体基因组被线性化,导致嵌合基因 orf355/orf77 转录异常,产生一段1.6 kb的RNA导致花粉败育[4]。该RNA在雄穗小孢子发育过程中表达量较高,但在其他组织内表达量很低。 3 讨论
3.1 Rf3 的定位情况
最初Kamps和Chase将该基因定位在第2染色体上RFLP标记 whp 与 bnl17.14 之间[20], Rf3 与两个标记的遗传距离均为6.4 cM。石永刚等将 Rf3 基因定位在RAPDE08-1.2与UMC49之间[15],两个分子标记与 Rf3 的遗传距离分别为2.7 cM和4.6 cM。Zhang等将 Rf3 基因定位在分子标记E7P6和SCARE12M7之间[16],与 Rf3 的遗传距离分别为0.9 cM和1.8 cM,与 Rf3 紧密连锁。Xu等[17]通过与水稻恢复基因 Rf1a进行同源比对的方法克隆到 4 个Rf3的候选基因Rf814a、Rf814b、Rf814c、Rf817。 从以上信息看,对玉米S型细胞质雄性不育恢复基因 Rf3 的定位区间还不够精细,而且在不同的文献报道中,定位区间存在差异。
3.2 新型群体构建
针对现有玉米 Rf3基因定位表型鉴定易受人为、环境因素影响及工作量大限制定位群体大小的缺点,提出一种不需要进行表型鉴定的Rf3基因定位方法。该方法由于定位群体基因型已知、表型无需鉴定,可以构建大群体,在一个世代就可以找到充足的重组个体对Rf3基因进行精细定位。本方法为定位Rf3 基因提出了一种简单、高效、省时的途径,促进生产上利用 Rf3 基因进行三系不育化制种。
本研究通过对12 000个群体单株进行标记鉴定,将恢复基因 Rf3 定位在标记A165和CG2之间。参照玉米自交系B73的序列,两个标记之间的物理距离约为1.4 Mb。
3.3 候选基因预测
因为很多PPR蛋白的靶作用位点是线粒体,可以对线粒体内的RNA进行转录前或者转录后的调控,而植物大多数的败育与线粒体内调控能量代谢的基因异常转录有关。因此很多学者认为恢复基因有可能是从PPR家族蛋白进化而来的,能对异常的RNA转录过程进行调控,从而恢复线粒体的正常功能。例如,已克隆的恢复基因 Rf-PPR592、Rfo/Rfk1、Rf1a/Rf1b 均编码以线粒体为靶作用位点的PPR蛋白。但是,也有一些恢复基因不编码PPR蛋白。
玉米S型细胞质雄性不育的恢复基因 Rf3 编码PPR蛋白的可能性较大,但也不能完全排除是其他基因的可能性。因此,只有最终克隆出 Rf3基因,才能真正证明Rf3 基因的分子功能。在本试验定位结果中,有两个基因能编码PPR蛋白。因此,可作为重要的候选基因进行功能验证,为最终克隆恢复基因 Rf3 提供了重要的研究方向。
参 考 文 献:
[1] Hu J, Wang K, Huang W, et al. The rice pentatricopeptide repeat protein Rf5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein grp162[J]. Plant Cell,2012, 24(1): 109-122.
[2] Zabala G, Gabay-Laughnan S, Laughnan J R. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize [J]. Genetics,1997, 147(2): 847-860.
[3] Matera J T, Monroe J, Smelser W, et al. Unique changes in mitochondrial genomes associated with reversions of S-type cytoplasmic male sterility in maizemar [J]. PLoS ONE,2011, 6(8): e23405.
[4] Gabay-Laughnan S, Kuzmin E V, Monroe J, et al. Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize [J]. Genetics,2009, 182:91-103.
[5] Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes [J]. New Phytol.,2011, 191: 37-47.
[6] Saha D, Prasad A M, Srinivasan R. Pentatricopeptide repeat proteins and their emerging roles in plants [J].Plant Physiol. Biochem.,2007, 45: 521-534.
[7] Schmitz-Linneweber C, Small I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression [J].Trends Plant Sci.,2008, 13: 663-670.
[8] Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-dterile plants [J]. Proc. Natl. Acad. Sci. USA,2002, 99: 10887-10892. [9] Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family[J]. EMBO Reports, 2003, 4:588-594.
[10] Zou Y, Wang Z, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. Plant Cell,2006, 18: 676-687.
[11] Cui X, Wise R P, Schnable P S. The Rf2 nuclear restorer gene of male-sterile T-cytoplasm maize[J]. Science,1996, 272: 1334-1336.
[12] Liu F, Schnable P S. Functional specialization of maize mitochondrial aldehyde dehydrogenases [J]. Plant Physiol.,2002, 130: 1657-1674.
[13] Itabashi E, Iwata N, Fujii S, et al. The fertility restorer gene, Rf2 , for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein[J]. Plant J.,2011, 65: 359-367.
[14] Fujii S, Toriyama K. Suppressed expression of Retrograde-Regulated Male Sterility restores pollen fertility in cytoplasmic male sterile rice plants[J]. Proc. Natl. Acad. Sci. USA,2009, 106: 9513-9518.
[15] 石永刚, 郑用琏, 李建生. 玉米S组CMS育性恢复基因的分子标记定位[J]. 作物学报,1997, 23(1): 1-6.
[16] Zhang Z F, Wang Y, Zheng Y L. AFLP and PCR-based markers linked to Rf3 , a fertility restorer gene for S cytoplasmic male sterility in maize[J]. Mol. Genet. Genomics,2006, 276: 162-169.
[17] Xu X, Liu Z, Zhang D, et al. Isolation and analysis of rice Rf1-orthologus PPR genes co-segregating with Rf3 in maize[J]. Plant Molecular Biology Reporter,2009, 27: 511-517.
[18] 李强,万建民. SSRHunter,一个本地化的SSR位点搜索软件的开发[J]. 遗传,2005, 27(5): 808-810.
[19] Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science,2009, 326: 1112-1115.
[20] Kamps T L, Chase C D. RFLP mapping of the maize gametophytic restorer-of-fertility locus ( rf3 ) and aberrant pollen transmission of the nonrestoring rf3 allele [J]. Theoretical and Applied Genetics,1997, 95(4): 525-531.
关键词: 玉米;细胞质雄性不育;S型;恢复基因
中图分类号: S513.035.3 文献标识号:A 文章编号: 1001 - 4942(2014)08 - 0001 - 05
Fine Mapping of Fertility Restorer Gene Rf3 of S-Type Cytoplasmic
Male Sterility and Candidate Gene Prediction in Maize
Li Peng1, Xiao Senlin2, Wang Shuxia2, Liu Juan2, Zhao Xianrong2, Chen Huabang2*
(1.College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, China;
2.Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/
State Key Laboratory of Plant Cell and Chromosome Engineering, Beijing 100101, China)
Abstract Cytoplasmic male sterility (CMS) is widespread in higher plants. CMS-S, one of the major CMS in maize, can be restored by Rf3 gene which has not been cloned yet. Based on the gametophytic nature of maize CMS-S, a novel homogeneous population constructing method was put forward for mapping. All the individuals obtained through this method carried the Rf3 gene making the phenotype identification unnecessary, and enough recombinants could be obtained in the same generation. Using this method, the DNA extracted from seeds could be used directly, so the efficiency of Rf3 mapping could be improved greatly. With this homogeneous population, Rf3 gene could be fine mapped in the locus between molecular marker A165 and CG2. The physical distance between the two SSR markers was about 1.4 Mb according to the genome sequence of maize inbred line B73.
Key words Maize; Cytoplasmic male sterility (CMS); S type; Restorer gene
细胞质雄性不育是指雄性器官不能产生可育花粉而雌性器官正常发育的母系遗传现象,广泛存在于高等植物中[1]。我国第一大粮食作物玉米是一种典型的异花授粉植物,杂种优势明显。早在20世纪60年代,基于细胞质雄性不育系的三系法制种技术已经在玉米杂交种生产中得到广泛应用。通过三系法进行制种,既能省去人工去雄的繁琐工作,又能提高种子纯度和产量。玉米细胞质雄性不育可分为三种类型,分别被命名为:CMS-T(Texas)、CMS-S(USDA)、CMS-C(Charrua)。1970年,与玉米T型不育基因紧密连锁的玉米小斑病大面积爆发,造成玉米大面积减产,使T型不育系的应用受到很大限制。目前,生产上主要利用S型和C型不育系进行制种。S型不育系因其亚种较多、不易感染单一的病原生理小种等优势而在生产中得到广泛应用,其育性可以被恢复基因 Rf3 完全恢复。
在玉米CMS-S细胞质中,线粒体内比正常个体多两条线性的质粒S1、S2[2],而在线粒体基因组嵌合基因 orf355/orf77 上游,存在一段与线性质粒S1和S2同源的末端反向重复区(Terminal inverted repeats,TIRs)[3]。TIRs与S1和S2重组后,环化的线粒体基因组被线性化,导致嵌合基因 orf355/orf77 转录异常,产生一段1.6 kb的RNA导致花粉败育[4]。该RNA在雄穗小孢子发育过程中表达量较高,但在其他组织内表达量很低。 3 讨论
3.1 Rf3 的定位情况
最初Kamps和Chase将该基因定位在第2染色体上RFLP标记 whp 与 bnl17.14 之间[20], Rf3 与两个标记的遗传距离均为6.4 cM。石永刚等将 Rf3 基因定位在RAPDE08-1.2与UMC49之间[15],两个分子标记与 Rf3 的遗传距离分别为2.7 cM和4.6 cM。Zhang等将 Rf3 基因定位在分子标记E7P6和SCARE12M7之间[16],与 Rf3 的遗传距离分别为0.9 cM和1.8 cM,与 Rf3 紧密连锁。Xu等[17]通过与水稻恢复基因 Rf1a进行同源比对的方法克隆到 4 个Rf3的候选基因Rf814a、Rf814b、Rf814c、Rf817。 从以上信息看,对玉米S型细胞质雄性不育恢复基因 Rf3 的定位区间还不够精细,而且在不同的文献报道中,定位区间存在差异。
3.2 新型群体构建
针对现有玉米 Rf3基因定位表型鉴定易受人为、环境因素影响及工作量大限制定位群体大小的缺点,提出一种不需要进行表型鉴定的Rf3基因定位方法。该方法由于定位群体基因型已知、表型无需鉴定,可以构建大群体,在一个世代就可以找到充足的重组个体对Rf3基因进行精细定位。本方法为定位Rf3 基因提出了一种简单、高效、省时的途径,促进生产上利用 Rf3 基因进行三系不育化制种。
本研究通过对12 000个群体单株进行标记鉴定,将恢复基因 Rf3 定位在标记A165和CG2之间。参照玉米自交系B73的序列,两个标记之间的物理距离约为1.4 Mb。
3.3 候选基因预测
因为很多PPR蛋白的靶作用位点是线粒体,可以对线粒体内的RNA进行转录前或者转录后的调控,而植物大多数的败育与线粒体内调控能量代谢的基因异常转录有关。因此很多学者认为恢复基因有可能是从PPR家族蛋白进化而来的,能对异常的RNA转录过程进行调控,从而恢复线粒体的正常功能。例如,已克隆的恢复基因 Rf-PPR592、Rfo/Rfk1、Rf1a/Rf1b 均编码以线粒体为靶作用位点的PPR蛋白。但是,也有一些恢复基因不编码PPR蛋白。
玉米S型细胞质雄性不育的恢复基因 Rf3 编码PPR蛋白的可能性较大,但也不能完全排除是其他基因的可能性。因此,只有最终克隆出 Rf3基因,才能真正证明Rf3 基因的分子功能。在本试验定位结果中,有两个基因能编码PPR蛋白。因此,可作为重要的候选基因进行功能验证,为最终克隆恢复基因 Rf3 提供了重要的研究方向。
参 考 文 献:
[1] Hu J, Wang K, Huang W, et al. The rice pentatricopeptide repeat protein Rf5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein grp162[J]. Plant Cell,2012, 24(1): 109-122.
[2] Zabala G, Gabay-Laughnan S, Laughnan J R. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize [J]. Genetics,1997, 147(2): 847-860.
[3] Matera J T, Monroe J, Smelser W, et al. Unique changes in mitochondrial genomes associated with reversions of S-type cytoplasmic male sterility in maizemar [J]. PLoS ONE,2011, 6(8): e23405.
[4] Gabay-Laughnan S, Kuzmin E V, Monroe J, et al. Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize [J]. Genetics,2009, 182:91-103.
[5] Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes [J]. New Phytol.,2011, 191: 37-47.
[6] Saha D, Prasad A M, Srinivasan R. Pentatricopeptide repeat proteins and their emerging roles in plants [J].Plant Physiol. Biochem.,2007, 45: 521-534.
[7] Schmitz-Linneweber C, Small I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression [J].Trends Plant Sci.,2008, 13: 663-670.
[8] Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-dterile plants [J]. Proc. Natl. Acad. Sci. USA,2002, 99: 10887-10892. [9] Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family[J]. EMBO Reports, 2003, 4:588-594.
[10] Zou Y, Wang Z, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. Plant Cell,2006, 18: 676-687.
[11] Cui X, Wise R P, Schnable P S. The Rf2 nuclear restorer gene of male-sterile T-cytoplasm maize[J]. Science,1996, 272: 1334-1336.
[12] Liu F, Schnable P S. Functional specialization of maize mitochondrial aldehyde dehydrogenases [J]. Plant Physiol.,2002, 130: 1657-1674.
[13] Itabashi E, Iwata N, Fujii S, et al. The fertility restorer gene, Rf2 , for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein[J]. Plant J.,2011, 65: 359-367.
[14] Fujii S, Toriyama K. Suppressed expression of Retrograde-Regulated Male Sterility restores pollen fertility in cytoplasmic male sterile rice plants[J]. Proc. Natl. Acad. Sci. USA,2009, 106: 9513-9518.
[15] 石永刚, 郑用琏, 李建生. 玉米S组CMS育性恢复基因的分子标记定位[J]. 作物学报,1997, 23(1): 1-6.
[16] Zhang Z F, Wang Y, Zheng Y L. AFLP and PCR-based markers linked to Rf3 , a fertility restorer gene for S cytoplasmic male sterility in maize[J]. Mol. Genet. Genomics,2006, 276: 162-169.
[17] Xu X, Liu Z, Zhang D, et al. Isolation and analysis of rice Rf1-orthologus PPR genes co-segregating with Rf3 in maize[J]. Plant Molecular Biology Reporter,2009, 27: 511-517.
[18] 李强,万建民. SSRHunter,一个本地化的SSR位点搜索软件的开发[J]. 遗传,2005, 27(5): 808-810.
[19] Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science,2009, 326: 1112-1115.
[20] Kamps T L, Chase C D. RFLP mapping of the maize gametophytic restorer-of-fertility locus ( rf3 ) and aberrant pollen transmission of the nonrestoring rf3 allele [J]. Theoretical and Applied Genetics,1997, 95(4): 525-531.