论文部分内容阅读
利用一次离子注入同时形成有源区和结终端结构,实现3 300 V 4H-SiC肖特基二极管。器件的正向电压为1.7 V时,电流达到10.3 A,相应电流密度为100 A/cm2,比导通电阻为7.77 mΩ·cm2。在3 300 V反向偏置电压下反向漏电流为226μA。测试同一晶圆上的pn二极管显示,设计的场限环结终端击穿电压可以达到4 000 V,达到仿真结果的95%。分析发现肖特基二极管的漏电流主要由肖特基接触的热场电子发射产生,有源区的肖特基接触线宽直接影响器件的正向电流密度和反向漏电流。设计合适的肖特基接触宽度是实现高性能器件的关键。
The 3 300 V 4H-SiC Schottky diode is realized by using one ion implantation to simultaneously form the active region and the junction termination structure. When the forward voltage of the device is 1.7 V, the current reaches 10.3 A, the corresponding current density is 100 A / cm2, and the specific on-resistance is 7.77 mΩ · cm2. The reverse leakage current is 226μA at 3 300 V reverse bias. Testing the pn diode on the same wafer showed that the final field-limiting junction breakdown voltage of the design could reach 4 000 V, reaching 95% of the simulation result. It is found that the Schottky diode leakage current is mainly caused by the Schottky contact thermal field electron emission. The Schottky contact line width of the active region directly affects the forward current density and the reverse leakage current of the device. Designing the proper Schottky contact width is the key to achieving high performance devices.