论文部分内容阅读
考虑到实验数据的大规模及样本数据形状的复杂性等特点,提出一种基于分级聚类与DBSCAN聚类相结合的HL-DBSCAN聚类算法,避免了DBSCAN的聚类算法较大的时间复杂度,适用性更广,更能体现一个聚簇的规律,提高分类精度.通过实验与结果分析,取得较好的聚类结果,证明了该算法在文本聚类处理中的可行性.