【摘 要】
:
商业化的锂往往会受到厚度及尺寸的限制,锂的利用率较低.本文介绍沉积出大尺寸的超薄锂的脉冲电沉积方法.利用扫描电子显微镜(SEM)进行分析,结果表明通过该脉冲电沉积的方法对沉积锂的形貌具有良好的改善作用,减少了锂枝晶的产生,沉积出的超薄锂具有光滑且致密均匀的表面.电化学性能测试表明该超薄锂在20μm的厚度下,仍具有3013mAh/g的容量,保证了其优异的电化学性能.同时具有良好的倍率性能,5C倍率下放电保持90%的优异容量.
【机 构】
:
武汉船用电力推进装置研究所,武汉430064
论文部分内容阅读
商业化的锂往往会受到厚度及尺寸的限制,锂的利用率较低.本文介绍沉积出大尺寸的超薄锂的脉冲电沉积方法.利用扫描电子显微镜(SEM)进行分析,结果表明通过该脉冲电沉积的方法对沉积锂的形貌具有良好的改善作用,减少了锂枝晶的产生,沉积出的超薄锂具有光滑且致密均匀的表面.电化学性能测试表明该超薄锂在20μm的厚度下,仍具有3013mAh/g的容量,保证了其优异的电化学性能.同时具有良好的倍率性能,5C倍率下放电保持90%的优异容量.
其他文献
针对强杂波背景下慢速运动目标检测性能不足的问题,设计了一种基于深度卷积神经网络(DCNN)的目标检测方法.主要将雷达回波信号距离—多普勒谱作为输入,送入设计的DCNN中,通过学习回波信号中杂波特征,并隐含的去除回波信号中目标成分,得到回波信号的残差谱.然后利用残差谱与回波信号R-D谱进行背景对消以抑制杂波,进而实现对回波信号中运动目标的检测.由于该方法通过学习杂波特性进而进行目标检测,因此适用于未知杂波模型的场景,避免了假设的模型与实际环境不符合的问题.实验验证:该方法相比于传统的杂波抑制目标检测方法,具
针对目前人为根据经验判断汽车轮胎是否达到最终使用时间不准确造成资源浪费的问题,提出了一种基于高斯拉普拉斯算子的汽车轮胎磨损检测算法.首先,将拍摄的汽车轮胎图片进行预处理,包括图像灰度化和高斯滤波,用拉普拉斯算子对图像的边缘进行检测;然后,对处理好的图片进行像素坐标提取,通过汽车轮胎花纹深度的检测算法,得到轮胎的实际深度值;最后,将检测的花纹深度值和轮胎使用的临界深度1.6 mm进行对比,若大于这个临界深度,就判断该轮胎可以继续使用,反之,则不可继续使用.实验结果表明:该实验方法能够很好地计算出轮胎花纹的深
输电线的跟踪与定位是无人机(UAV)实现自主巡检输电线的关键要素.针对目前输电线跟踪与定位方法存在易受天气和环境因素影响、成本较高以及数据处理困难等缺陷,提出了一种基于电场传感器阵列的输电线跟踪与定位方法,计算出当前UAV的航向角偏转角度、输电线与UAV的距离以及仰角,并设计了电场传感器及信号调理电路,进行了实验验证.实验结果表明:当传感器阵列沿着输电直导线移动时,依据此方法计算出的航向角偏转角度的最大绝对误差为5.74°,阵列与输电线距离最大绝对误差为20.4 cm,仰角的最大绝对误差为8.12°,误差
地铁过渡电阻是影响杂散电流泄露的重要因素之一,准确测量过渡电阻可以及时了解地铁回流系统的老化程度,对于杂散电流的防治有很大的意义.提出了一种可以在线测量地铁过渡电阻的方法,将列车运行时的回流电流作为外部测试电源,利用区间中的传感器采集区间内轨道电压和排流网极化电压,得出轨道到排流网的电压,再根据两个区间的轨道电流求出泄漏电流的值进而求出过渡电阻.这种方法可以改变传统的停电测量方式,实现在不停电情况下快速测量区间过渡电阻.最后,通过SIMULINK工具箱搭建回流系统模型,采集电压值进行计算对比,验证其方法的
针对深度模型在网络深层易丢失细节特征导致对小尺度目标检测效果差的问题,提出一种基于YOLOv3算法的小尺度交通信号灯检测模型.首先,采用跨越式特征融合提升浅层特征图的语义能力、减少过度融合产生的冗余信息;然后,采用K-means算法聚类出适合交通信号灯尺寸的新先验框,再采用线性缩放机制对新先验框离散以提升IoU.经过Bosch Small Traffic Lights Dataset测试集测试表明:所设计的新模型相较原YOLOv3模型,其mAP提升约9%,Green-AP提升5%,Red-AP提升30%,
基于深度学习的交通标志牌检测算法取得了突破性的进展,但在检测精度和速度方面仍得不到兼顾.针对此问题,本文在YOLOF算法的基础上提出了一种改进的算法,在YOLOF网络检测分支中融入注意力机制以增强网络对交通标志牌目标的表示,并利用CIoU改进损失函数;使用数据增广模拟自动驾驶过程中的复杂环境,增强检测模型的鲁棒性.对比实验结果表明:本文提出的改进方法具有更高的检测精度,能够达到检测精度和速度的平衡.
针对高稳定目标导航参数获取对多传感器融合算法的需求,提出一种偏振光/捷联惯性导航系统(SINS)/北斗卫星导航系统(BDS)/地磁组合导航方法.分析了各类传感器的导航性能,采用联邦卡尔曼滤波器两级结构,利用子滤波器进行局部估计,主滤波器进行多传感器数据融合,研究了基于联邦卡尔曼滤波方法的多传感器数据融合导航算法.进行了预定路径往返运动实验,运动距离2300 m,系统定位的东向误差3.2305 m,北向误差3.7419 m,系统可用于平台、地面、空间运动导航.
本文简要介绍了AFE变频器的工作原理,从设备外形尺寸及重量、能量回馈及电磁兼容等方面,对AFE变频器和DFE变频器进行了对比.介绍了新型中型海洋救助船主推进系统AFE变频器的主要参数及应用情况,为后续船型的设计和建造提供了有益参考.
在木材加工领域,木材表面颜色是否协调对最终产品的经济效益有重要的影响.木材由于天然生长的缘故,表面颜色丰富,人工分拣困难.为对木材颜色进行分类,针对该场景提出使用无监督学习算法,即聚类算法.首先对木材图片进行轮廓检测,数据清洗排除异常样本,然后在RGB色彩空间上进行特征提取,最终经过K-means算法对样本的特征聚类.实验结果表明:在木材颜色分类场景下使用聚类算法可有效减少人工标注的成本,算法运行效率高,具有重要的应用价值.
为解决鸽群优化(PIO)算法易陷入局部最优、收敛速度慢的问题,提出了一种改进的鸽群优化(IPIO)算法.将全局搜索能力较强的天牛须搜索(BAS)算法融入到指南针算子中,在地标算子中引入混沌扰动策略来提高算法的局部搜索精度.利用测试函数对改进算法进行性能测试,并提出奇异值分解—无迹卡尔曼滤波(SVD-UKF)参数整定的适应度函数,将经改进算法优化后的参数应用到机车黏着控制系统中.仿真结果表明:改进算法具有更强的全局搜索能力和更高的搜索精度,经参数整定后的SVD-UKF具有良好的滤波估计效果.