论文部分内容阅读
The application of some semi-solid forming magnesium alloys is restricted due to their weak mechanical properties. To improve the mechanical properties, it is necessary to research the regularity and theory of semi-solid microstructure evolution of the alloy. In this study, microstructure evolution of ZA72 alloy during the partial remelting, and the effect of holding temperature and holding time on the semi-solid microstructure evolution of ZA72 magnesium alloy were investigated by means of OM, SEM and EDS analysis. The results indicate that the microstructure with small and spheroidal semi-solid particles which are available for thixo-forming can be obtained using proper heating parameters. After being isothermally treated at between 580 and 610 ℃ for 30 min, the equivalent size and shape factor of primary solid phase of ZA72 alloy decrease gradually, while the liquid volume fraction increases. When isothermally treated at 600 ℃ and held for different times from 15 to 60 min, with the increase of holding time, the equivalent size of primary particles decreases at first and then increases gradually; while the shape factor decreases gradually. The best heat treatment parameters in this experiment are to hold at 610 ℃ for 30 min. Compared with as-cast ZA72 alloy, the sizes of the eutectic phase and second α-Mg phase obtained in semi-solid state are smaller due to the higher solidification rate and the higher under-cooling degree than as-cast state. These decrease the fracture probability during tensile stress and improve the properties of the ZA72 alloy by semi-solid forming.
The application of some semi-solid forming magnesium alloys is restricted due to their weak mechanical properties. To improve the mechanical properties, it is necessary to research the regularity and theory of semi-solid microstructure evolution of the alloy. In this study, microstructure evolution of ZA72 alloy during the partial remelting, and the effect of holding temperature and holding time on the semi-solid microstructure evolution of ZA72 magnesium alloy were investigated by means of OM, SEM and EDS analysis. The results that that microstructure with small and spheroidal semi-solid particles which are available for thixo-forming can be obtained using proper heating parameters. After being isothermally treated at between 580 and 610 ° C for 30 min, the equivalent size and shape factor of primary solid phase of ZA72 alloy decreased gradually, while the liquid volume fraction increases. When isothermally treated at 600 ° C and held for different times from 15 to 60 min, with the increase of holding time, the equivalent size of primary particles decreases at first and then increases more; while the shape factor tends gradually. while the shape factor tends gradually. While the shape factor decreases gradually. The best heat treatment parameters in this experiment are to hold at 610 ° C for 30 min. ZA72 alloy, the sizes of the eutectic phase and second α-Mg phase obtained in semi-solid state are smaller due to the higher solidification rate and the higher under-cooling degree than as-cast state. These decrease the fracture probability during tensile stress and improve the properties of the ZA72 alloy by semi-solid forming.