论文部分内容阅读
In recent years, with the rapid development of polymer science, the application of classical named reactions has transferred from small-molecule compounds to polymers. The versatility of named reactions in terms of monomer selection, solvent environment, reaction temperature, and post-modification permits the synthesis of sophisticated macromolecular structures under conditions where other reaction processes will not operate. In this review, we divided the named reactions employed in polymer-chain synthesis into three types: transition metal-catalyzed cross-coupling reactions, metal-free cross-coupling reactions, and multi-components reactions. Thus, we focused our discussion on the progress in the utilization of these named reactions in polymer synthesis.
The recent utility, named reactive reactions in terms of monomer selection, solvent environment, reaction temperature, and post-modification permits the synthesis of sophisticated macromolecular structures under conditions where other reaction processes will not operate. In this review, we divided the named reactions employed in polymer-chain synthesis into three types: transition metal-catalyzed cross-coupling reactions, metal-free cross-coupling reactions, and multi-components reactions. Thus, we focused our discussion on the progress in the utilization of these named reactions in polymer synthesis.