论文部分内容阅读
摘 要:发散思维又称“求异思维”,指思维活动发挥作用的灵活与广阔程度,是一种要求产生多种可能的答案而不是单一正确答案的思维。在思维活动中,体现从一点出发沿着多方向达到思维目标。
关键词:初中数学 ;发散思维;培养
教育心理学认为,创新思维有赖于发散思维。发散思维是指考虑问题时,没有一定的思考方向,可以突破固有的知识结构和认识框架、自由思考、任意想象,从而获得大量的设想,提出多种想法和做法。
一、发散性思维的特征
发散性思维要求从一个目标或思维起点出发,沿着不同方向,顺应各个角度,提出各种设想,寻求各种解题途径去分析和解决问题。发散性思维具有以下特征:
(一)流暢性
心智活动畅通无阻,能在短时间内表达较多的概念,这是发散思维的量的指标。
(二)变通性
思考能随机应变,触类旁通,不局限于某个方面,不受消极定势的约束,能产生新的构想,提出不同的新观念。
(三)独特性
以前所未有的新角度、新观念去认识事物,反映事物,对事物表现出独特的见解。
二、发散思维的意义
首先,能够较好地培养学生的思维能力和分析、解决问题的能力。发散思维的核心是问题发散,是由此及彼的层递、比较与分析,是将已有知识和新知识的融合,是理论与具体例证的相互印证。所以,学生的思维在教学过程中能够得到多层面的锻炼。
其二,可以使教材的知识点更系统、更符合认知规律,有利于教师完成知识点间的过渡和衔接。
其三,可以扩大知识点的范围,扩充教材容量,弥补教材对知识点解释方面的一些欠缺。
其四,能使学生适时地对旧知识进行复习和回顾,能很好地为以后要学的知识做好铺垫,并能将新旧知识串联在一起,加强理解和记忆。
由以上说明可知,数学发散思维的培养对数学学习有重要的作用,因此在教学中,要加强对学生发散思维的培养。在实际教学中可采用以下几个方面去培养学生的发散思维能力。
三、培养学生发散思维的方法
1.创设发散思维的情景
教师在课堂上要善于创设思维情景,引导学生积极思维,运用已学过的知识去解决新问题。教师应给学生留足空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生能够与教师一起参与教学活动,真正做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力。在创设思维情境过程中,笔者发现组织课堂讨论是一种非常有效的方法,课堂讨论能培养学生敢于提问题、敢于批判、敢于质疑的精神,有利于学生之间的多向交流,取长补短。所以,教师应有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论,差缺互补,分组操作等内容,锻炼学生的合作能力。
2.适当进行“一题多变”、“一法多用”、“一题多解”等教学活动,培养学生的发散思维
一题多变是通过题目的引申、变化、发散,提供问题的背景,提示问题间的逻辑关系。新课中,可以以简单题入手由浅入深,使大部分学生对当堂课内容产生兴趣。在习题课中,把较难的题改成多变题目,让学生找到突破口,对难题也产生兴趣。同时要让学生自己尝试改变题目中的某一条件,对知识进行重组,探索出新知识,解决新问题,培养学生多思多变的能力。
3.激励学生“联想”、“猜想”,培养学生的发散思维能力
数学家发现数学规律的过程,往往是先有一个猜想,而后对猜想进行验证或修正的过程,而猜想又往往是以联想为中介的。在新课程标准下,联想和猜想的数学思维方法在数学学习中时常显现,作为现阶段的初中数学教师,应不断改变教学模式和方式,加强学生对联想和猜想的数学思维方法的指导。
联想是由来源材料分化多种因素,形成的发散思维的中间环节。善于联想,就是善于从不同的方面思考问题,对一类型的题能联想到多种方法。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点却与工程题目相同,因此可用工程问题的解题思路去分析、解答。又如多边形内角和与外角和定理的学习探讨,就可以从三角形、四边形等特殊图形的内角和与外角和定理的探讨入手,引导学生经过一个顶点画对角线,将多边形分成若干三角形然后再进行内角和的讨论;再从外角与相邻的内角的关系出发探讨外角和,从而得出猜想。在这里,三角形,四边形的内角和与外角和的探讨方法便是参照,通过类比猜想得出正确结论。这类题目不仅题型新,而且扩大了知识和能力的覆盖面,通过题目所提供的结构特征,鼓励、引导学生大胆猜想,充分发挥想象能力。
4.在诱导乐于求异的心理倾向中,培养学生的发散思维能力
长期以来,初中数学教学以集中思维为主要思维方式,课本上的题目和材料的呈现过程大都循着一个模式,学生习惯于按照书上写的与教师教的方式去思考问题,用符合常规的思路和方法解决问题,这对于基础知识、基本技能的掌握是必要的,但对于中学生学习数学兴趣的激发、智力能力的发展,特别是创造性思维的发展,显然是不够的。而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多种解决问题方案”的特点,因而成为创造性思维的一种主要形式。在中学数学教学的过程中,在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”。赞可夫这句话说明了发散思维能力的形成,需要以乐于求异的心理倾向作为一种重要的内驱力。教师妥善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另一个角度分析一下!”的求异思考。事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,也才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。
训练学生对同一条件,联想到多种结论的发散思维习惯。这种思维习惯是指确定了已知条件后,没有固定的结论,让学生自己尽可能多地确定未知结论,并这个过程充分去求解这些未知结论。揭示思维的广度和深度。不同层次的学生都能得到有益的尝试,符合素质教育面向全体学生的要求。
关键词:初中数学 ;发散思维;培养
教育心理学认为,创新思维有赖于发散思维。发散思维是指考虑问题时,没有一定的思考方向,可以突破固有的知识结构和认识框架、自由思考、任意想象,从而获得大量的设想,提出多种想法和做法。
一、发散性思维的特征
发散性思维要求从一个目标或思维起点出发,沿着不同方向,顺应各个角度,提出各种设想,寻求各种解题途径去分析和解决问题。发散性思维具有以下特征:
(一)流暢性
心智活动畅通无阻,能在短时间内表达较多的概念,这是发散思维的量的指标。
(二)变通性
思考能随机应变,触类旁通,不局限于某个方面,不受消极定势的约束,能产生新的构想,提出不同的新观念。
(三)独特性
以前所未有的新角度、新观念去认识事物,反映事物,对事物表现出独特的见解。
二、发散思维的意义
首先,能够较好地培养学生的思维能力和分析、解决问题的能力。发散思维的核心是问题发散,是由此及彼的层递、比较与分析,是将已有知识和新知识的融合,是理论与具体例证的相互印证。所以,学生的思维在教学过程中能够得到多层面的锻炼。
其二,可以使教材的知识点更系统、更符合认知规律,有利于教师完成知识点间的过渡和衔接。
其三,可以扩大知识点的范围,扩充教材容量,弥补教材对知识点解释方面的一些欠缺。
其四,能使学生适时地对旧知识进行复习和回顾,能很好地为以后要学的知识做好铺垫,并能将新旧知识串联在一起,加强理解和记忆。
由以上说明可知,数学发散思维的培养对数学学习有重要的作用,因此在教学中,要加强对学生发散思维的培养。在实际教学中可采用以下几个方面去培养学生的发散思维能力。
三、培养学生发散思维的方法
1.创设发散思维的情景
教师在课堂上要善于创设思维情景,引导学生积极思维,运用已学过的知识去解决新问题。教师应给学生留足空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生能够与教师一起参与教学活动,真正做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力。在创设思维情境过程中,笔者发现组织课堂讨论是一种非常有效的方法,课堂讨论能培养学生敢于提问题、敢于批判、敢于质疑的精神,有利于学生之间的多向交流,取长补短。所以,教师应有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论,差缺互补,分组操作等内容,锻炼学生的合作能力。
2.适当进行“一题多变”、“一法多用”、“一题多解”等教学活动,培养学生的发散思维
一题多变是通过题目的引申、变化、发散,提供问题的背景,提示问题间的逻辑关系。新课中,可以以简单题入手由浅入深,使大部分学生对当堂课内容产生兴趣。在习题课中,把较难的题改成多变题目,让学生找到突破口,对难题也产生兴趣。同时要让学生自己尝试改变题目中的某一条件,对知识进行重组,探索出新知识,解决新问题,培养学生多思多变的能力。
3.激励学生“联想”、“猜想”,培养学生的发散思维能力
数学家发现数学规律的过程,往往是先有一个猜想,而后对猜想进行验证或修正的过程,而猜想又往往是以联想为中介的。在新课程标准下,联想和猜想的数学思维方法在数学学习中时常显现,作为现阶段的初中数学教师,应不断改变教学模式和方式,加强学生对联想和猜想的数学思维方法的指导。
联想是由来源材料分化多种因素,形成的发散思维的中间环节。善于联想,就是善于从不同的方面思考问题,对一类型的题能联想到多种方法。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点却与工程题目相同,因此可用工程问题的解题思路去分析、解答。又如多边形内角和与外角和定理的学习探讨,就可以从三角形、四边形等特殊图形的内角和与外角和定理的探讨入手,引导学生经过一个顶点画对角线,将多边形分成若干三角形然后再进行内角和的讨论;再从外角与相邻的内角的关系出发探讨外角和,从而得出猜想。在这里,三角形,四边形的内角和与外角和的探讨方法便是参照,通过类比猜想得出正确结论。这类题目不仅题型新,而且扩大了知识和能力的覆盖面,通过题目所提供的结构特征,鼓励、引导学生大胆猜想,充分发挥想象能力。
4.在诱导乐于求异的心理倾向中,培养学生的发散思维能力
长期以来,初中数学教学以集中思维为主要思维方式,课本上的题目和材料的呈现过程大都循着一个模式,学生习惯于按照书上写的与教师教的方式去思考问题,用符合常规的思路和方法解决问题,这对于基础知识、基本技能的掌握是必要的,但对于中学生学习数学兴趣的激发、智力能力的发展,特别是创造性思维的发展,显然是不够的。而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多种解决问题方案”的特点,因而成为创造性思维的一种主要形式。在中学数学教学的过程中,在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”。赞可夫这句话说明了发散思维能力的形成,需要以乐于求异的心理倾向作为一种重要的内驱力。教师妥善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另一个角度分析一下!”的求异思考。事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,也才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。
训练学生对同一条件,联想到多种结论的发散思维习惯。这种思维习惯是指确定了已知条件后,没有固定的结论,让学生自己尽可能多地确定未知结论,并这个过程充分去求解这些未知结论。揭示思维的广度和深度。不同层次的学生都能得到有益的尝试,符合素质教育面向全体学生的要求。