论文部分内容阅读
《小学数学新课程标准》中指出:要让学生初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。作为数学教师,首先必须明确我们自身的任务:一要让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解;二要重视培养学生科学的思维方法。那么在教学中,我们怎么培养学生的思维能力呢?
一、进行类比迁移,培养思维的深刻性
思维的深刻性是指思维活动达到较高的抽象程度和逻辑水平,表现在能善于深入地思索问题,从纷繁到复杂的现象中,抓住发现事物的本质规律。小学生的认知结构往往缺损,他们不善于将知识纳入原有的认知结构之中,因而考虑问题缺乏深度,因此,在教学中应抓以下三点:
1、培养学生对数的概括能力。
数的分解能力,是数的概括的核心。如教20以内的加法,利用直观教具,让学生了解某数是由几个部分组成和如何组成的,引导他们将20以内的数比较实际意义,认识大小,顺序、进行组合与分解练习。
2、让儿童逐步掌握简单的推理方法。
根据教材的内在联系,引导儿童进行类比推理。例如:在乘法口诀教学中,先通过一环紧扣一环的步骤,让学生展示“生动”的思维过程,使学生认识2—4的乘法口诀的可信性,还了解每句乘法口诀形成的过程。然后利用低年级学生模仿性强的特点,让他们模仿老师的做法去试一试,推导出5—6的乘法口诀。生模仿获得成功后,就与他们一起总结几个步骤:
①摆出实物;提供思维材料;
②列出加法式子的结果;
③列出乘法式子,说明它的结果就是加法式子结果;
④用乘法式子的已知数和结果构造口诀。让他们按步骤来独立地推导7—8的乘法口诀。
在这过程中,针对不同学生不同阶段的不同情況,进行多寡不同的提示和点拨,使独立思维逐步发展。到推导9的乘法口诀时,有的学生已经几乎完全能进行推导了,而大多数学生的思维的能力都表现出不同程度的提高。
3、培养掌握应用题结构的能力。
各科教学问题,都有一个结构问题。狠抓结构训练,使学生掌握数学问题的数量关系,而不受题中具体的情节干扰,是培养思维深刻性的重要一环。由于低年级学生受年龄和知识水平的限制,他们的思维往往带有很大的局限性。为此,我在数学教学中采取多种方法。如:补充条件和问题,不变题意而改变叙述方法,根据问题说所需条件,扩题训练,拆应用题缩题训练,审题训练,自编应用题训练等等,拓展学生思维活动,训练学生思维的深刻性。
二、进行合理联想,培养思维的敏捷性
思维敏捷性是指一个人在进行思维活动时,具有当机立断的发现和解决问题的能力,表现在运算过程的正确迅速,观察问题的避繁就简,思维过程的简洁敏捷。因此,我在计算教学过程中,以培养学生思维的敏捷为目的,要求学生有正确迅速的计算能力。办法有以下两点:
1、计算教学中,要求学生在正确的基础上,始终有速度。
对于低年级的儿童,应注意抓好学生计算的正确率的同时,狠抓速率训练,每天用一定时间进行一次速算练习。形式有口算。如“每人一题,”“一人计算,全班注视”,发现错误,立即更正或“对口令”,老师说前半句乘法口诀,全班同学回答下半句乘法口诀,让全体学生的思维都处于积极状态。速算比赛,如:比在规定时间内完成计算题的数量,比完成规定习题所需时间,使全班学生人人都能正确迅速地思考问题。
2、计算过程中传授一些速算方法。
例如:在学习掌握“凑十法”的基础上,借鉴珠算的长处,教给学生“互补法”使学生知道1和9,2和8,3和7,4和6等互为补数。如计算9 2时,因为9和1互为补数,就能见9想10,得11。训练学生敏锐的感知,例如
①10X5X210÷5X210÷(5X2)10÷5÷2
②8÷4 8÷48÷4X8÷48X4÷8X4
③32—8÷432÷8X432 8÷4
通过反复训练,引导学生合理联想,沟通知识间的内在联系,是训练学生思维敏捷一条行之有效的途径。
三、进行说意练习,培养思维的逻辑性
思维的逻辑性表现为:遵循逻辑的规律,顺序和根据,使思考问题有条理,层次分明,前后连贯。语言是思维的裁体,思维依靠语言,语言促进思维。教师对学生加强语言的调控,训练其口语表达能力,是学生能够有根有据进行思考的基础。因此教学中要使学生比较完整地叙述思考过程,准确无误地说出解答思路,并训练学生的语言表达简洁规范,逐步提高思维的条理性和逻辑性。
低年级学生学习数学知识,必须依赖于直观材料,使他们所学知识产生鲜明的表象。同时,要使学生获得准确丰富的感性知识,又必须通过合乎逻辑语言引导。最后大脑借助于语言,对感知的事物去伪存真,分析综合,抽象出本质特征。
如:教学“整万数的读法”时,教师在计数器上拨数,为学生认识数提供了感性材料之后,首先让学生说了计算器上珠所表示的意义,在学生大脑中建立了整万数的表象,为学生由形象思维向抽象思维发展提供了支柱,然后,又摆脱计算器,让学生在数位顺序表上读出“0”在不同位上的五个数,再让学生说出每个数中的“0”在什么位上和它的读法。这样,使学生用讨论的方法对比整万数与万以内数读法的异同,从而概括出整万数的读数法则,促进了学生抽象逻辑思维能力的发展。
例如应用题教学:果园里有梨树45棵,比桔树少9棵,桔树有多少棵?启发引导学生按下列要点讲清算理:根据哪个条件知道“谁与谁比”“谁多谁少”“知谁求谁”梨树比桔树少9棵换成另外的说法,应该怎样叙述?要求桔树多少棵,实际是求比几多几的数,应该用什么方法计算?对这些问题综合连贯的回答,小学生就能较准确地用口头表达算理,经过反复的讲练,不但提高了低年级学生的语言表达能力,而且能深化思维。
总之,低年级学生思维能力培养,是我们当今数学教学中必然趋向。让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学,让他们的数学思维能力在课堂学习中得到充分的发展。
一、进行类比迁移,培养思维的深刻性
思维的深刻性是指思维活动达到较高的抽象程度和逻辑水平,表现在能善于深入地思索问题,从纷繁到复杂的现象中,抓住发现事物的本质规律。小学生的认知结构往往缺损,他们不善于将知识纳入原有的认知结构之中,因而考虑问题缺乏深度,因此,在教学中应抓以下三点:
1、培养学生对数的概括能力。
数的分解能力,是数的概括的核心。如教20以内的加法,利用直观教具,让学生了解某数是由几个部分组成和如何组成的,引导他们将20以内的数比较实际意义,认识大小,顺序、进行组合与分解练习。
2、让儿童逐步掌握简单的推理方法。
根据教材的内在联系,引导儿童进行类比推理。例如:在乘法口诀教学中,先通过一环紧扣一环的步骤,让学生展示“生动”的思维过程,使学生认识2—4的乘法口诀的可信性,还了解每句乘法口诀形成的过程。然后利用低年级学生模仿性强的特点,让他们模仿老师的做法去试一试,推导出5—6的乘法口诀。生模仿获得成功后,就与他们一起总结几个步骤:
①摆出实物;提供思维材料;
②列出加法式子的结果;
③列出乘法式子,说明它的结果就是加法式子结果;
④用乘法式子的已知数和结果构造口诀。让他们按步骤来独立地推导7—8的乘法口诀。
在这过程中,针对不同学生不同阶段的不同情況,进行多寡不同的提示和点拨,使独立思维逐步发展。到推导9的乘法口诀时,有的学生已经几乎完全能进行推导了,而大多数学生的思维的能力都表现出不同程度的提高。
3、培养掌握应用题结构的能力。
各科教学问题,都有一个结构问题。狠抓结构训练,使学生掌握数学问题的数量关系,而不受题中具体的情节干扰,是培养思维深刻性的重要一环。由于低年级学生受年龄和知识水平的限制,他们的思维往往带有很大的局限性。为此,我在数学教学中采取多种方法。如:补充条件和问题,不变题意而改变叙述方法,根据问题说所需条件,扩题训练,拆应用题缩题训练,审题训练,自编应用题训练等等,拓展学生思维活动,训练学生思维的深刻性。
二、进行合理联想,培养思维的敏捷性
思维敏捷性是指一个人在进行思维活动时,具有当机立断的发现和解决问题的能力,表现在运算过程的正确迅速,观察问题的避繁就简,思维过程的简洁敏捷。因此,我在计算教学过程中,以培养学生思维的敏捷为目的,要求学生有正确迅速的计算能力。办法有以下两点:
1、计算教学中,要求学生在正确的基础上,始终有速度。
对于低年级的儿童,应注意抓好学生计算的正确率的同时,狠抓速率训练,每天用一定时间进行一次速算练习。形式有口算。如“每人一题,”“一人计算,全班注视”,发现错误,立即更正或“对口令”,老师说前半句乘法口诀,全班同学回答下半句乘法口诀,让全体学生的思维都处于积极状态。速算比赛,如:比在规定时间内完成计算题的数量,比完成规定习题所需时间,使全班学生人人都能正确迅速地思考问题。
2、计算过程中传授一些速算方法。
例如:在学习掌握“凑十法”的基础上,借鉴珠算的长处,教给学生“互补法”使学生知道1和9,2和8,3和7,4和6等互为补数。如计算9 2时,因为9和1互为补数,就能见9想10,得11。训练学生敏锐的感知,例如
①10X5X210÷5X210÷(5X2)10÷5÷2
②8÷4 8÷48÷4X8÷48X4÷8X4
③32—8÷432÷8X432 8÷4
通过反复训练,引导学生合理联想,沟通知识间的内在联系,是训练学生思维敏捷一条行之有效的途径。
三、进行说意练习,培养思维的逻辑性
思维的逻辑性表现为:遵循逻辑的规律,顺序和根据,使思考问题有条理,层次分明,前后连贯。语言是思维的裁体,思维依靠语言,语言促进思维。教师对学生加强语言的调控,训练其口语表达能力,是学生能够有根有据进行思考的基础。因此教学中要使学生比较完整地叙述思考过程,准确无误地说出解答思路,并训练学生的语言表达简洁规范,逐步提高思维的条理性和逻辑性。
低年级学生学习数学知识,必须依赖于直观材料,使他们所学知识产生鲜明的表象。同时,要使学生获得准确丰富的感性知识,又必须通过合乎逻辑语言引导。最后大脑借助于语言,对感知的事物去伪存真,分析综合,抽象出本质特征。
如:教学“整万数的读法”时,教师在计数器上拨数,为学生认识数提供了感性材料之后,首先让学生说了计算器上珠所表示的意义,在学生大脑中建立了整万数的表象,为学生由形象思维向抽象思维发展提供了支柱,然后,又摆脱计算器,让学生在数位顺序表上读出“0”在不同位上的五个数,再让学生说出每个数中的“0”在什么位上和它的读法。这样,使学生用讨论的方法对比整万数与万以内数读法的异同,从而概括出整万数的读数法则,促进了学生抽象逻辑思维能力的发展。
例如应用题教学:果园里有梨树45棵,比桔树少9棵,桔树有多少棵?启发引导学生按下列要点讲清算理:根据哪个条件知道“谁与谁比”“谁多谁少”“知谁求谁”梨树比桔树少9棵换成另外的说法,应该怎样叙述?要求桔树多少棵,实际是求比几多几的数,应该用什么方法计算?对这些问题综合连贯的回答,小学生就能较准确地用口头表达算理,经过反复的讲练,不但提高了低年级学生的语言表达能力,而且能深化思维。
总之,低年级学生思维能力培养,是我们当今数学教学中必然趋向。让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学,让他们的数学思维能力在课堂学习中得到充分的发展。