【摘 要】
:
相比于异步电机,永磁同步电机具有功率密度高、效率高、可轻量化等优点,在大功率牵引传动领域得到了越来越多的研究。由于牵引变流器中二次谐振回路的存在,永磁电机的电压和电流在特定的定子频率点会产生振荡,影响系统的稳定运行,而传统的永磁电机电流控制方法无法有效抑制此振荡。为此,提出了一种基于有源阻尼注入方法的新型电流控制策略,实现了大功率永磁牵引电机在宽转速范围内转矩的稳定发挥,半实物仿真和试验结果验证了此方法的可行性。
【机 构】
:
中国铁道科学研究院集团有限公司机车车辆研究所
【基金项目】
:
中国铁道科学研究院集团有限公司科研资助项目(2019YJ012)。
论文部分内容阅读
相比于异步电机,永磁同步电机具有功率密度高、效率高、可轻量化等优点,在大功率牵引传动领域得到了越来越多的研究。由于牵引变流器中二次谐振回路的存在,永磁电机的电压和电流在特定的定子频率点会产生振荡,影响系统的稳定运行,而传统的永磁电机电流控制方法无法有效抑制此振荡。为此,提出了一种基于有源阻尼注入方法的新型电流控制策略,实现了大功率永磁牵引电机在宽转速范围内转矩的稳定发挥,半实物仿真和试验结果验证了此方法的可行性。
其他文献
在大功率场合,三电平中点箝位NPC (neutral point clamped)型逆变器需运行在较低的开关频率,此时传统调制方式(载波调制和空间矢量调制)不再适用,需采用特定谐波消除脉宽调制SHEPWM(specific harmonic elimination pulse width modulation)等其他调制方式。主要研究应用于三电平NPC的SHEPWM的实现方法,目前三电平SHEPWM的实现多采用多项式曲线拟合法,但当所需拟合的开关角曲线波动过大时,多项式曲线拟合法需进行分段拟合才可达到拟合
高开关速率且栅极电压稳定的驱动是SiC MOSFET高频工作、进而实现功率变换系统小型化和轻量化的关键技术之一。针对如何在高开关速率下稳定驱动SiC MOSFET,并实现可靠的短路保护,根据栅源电压干扰的传导特点,基于辅助器件的跨导增益构建负反馈控制回路,提出一种SiC MOSFET栅极驱动,进而研究揭示该驱动的短路保护策略。首先,基于跨导增益负反馈构造栅极驱动电路并分析其工作原理;其次,研究该驱动的串扰抑制能力与短路保护特性;最后,通过实验证明基于跨导增益负反馈的栅极驱动电路的可行性,及其在串扰抑制和短
绝缘栅双极型晶体管IGBT(insulated gate bipolar transistor)模块结温的精确计算是开展功率器件主动热管理、寿命预测的前提和关键。IGBT模块的导通压降和开关损耗均受温度影响,在计算损耗时应根据温度对结果进行修正。基于空间矢量脉宽调制SVPWM(space vector pulse width modulation)的两电平三相逆变器,利用热阻抗模型预测法对IGBT模块的结温进行监测,建立了结温计算模型。然后通过PLECS软件热仿真对比验证了有无温度修正的理论计算方法,结果
近年来,多电平变换器成为高压、大功率电力电子系统应用领域的一个研究热点,而多电平脉宽调制PWM(pulse width modulation)控制方法是多电平变换器研究领域的核心问题之一。首先,阐述了3种载波PWM控制方法,并根据不同的控制指标介绍了各类优化载波PWM控制方法;其次,介绍了传统空间矢量脉宽调制SVPWM(space vector pulse width modulation)算法,并根据算法优化及控制指标详细介绍了不同坐标变换下的SVPWM,着重阐述了虚拟SVPWM及在其基础上衍生的各类优
级联H桥AC/DC型电力电子变压器中的高频直流环节通常采用双有源桥电路DAB(dual-active bridge),并通过移相控制方式进行能量传递.单移相控制会在DAB中引入回流功率,增加系统
为解决传统有限集模型预测电流控制FCS-MPCC(finite-control-set model predictive current control)方法下开关频率不固定和网侧电流谐波大等问题,以单相PWM整流器为研究对象,研究了一种两矢量有限集模型预测电流控制TV-FCS-MPCC(two-vector-based finite-control-set model predictive current control)方法。该方法根据整流器的3种电压矢量进行扇区划分,并在每个开关周期内同时作用一个扇
牵引变流器被视为轨道交通列车的“心脏”,为列车的运行提供强劲动力。但作为变流器实现电能变换的关键执行部件,绝缘栅双极晶体管IGBT (insulate-gate bipolar transistor)模块与电容性能受多变工况影响较大且较为脆弱,对列车安全运行带来极大挑战。现行的维护方案存在维修成本高、维修不及时的缺点,而以寿命评估为核心的更加经济安全的状态修被认为是未来修程修制的改革方向。为此,针对牵引变流器的关键部件—IGBT模块和电容的寿命评估方法进行调研和总结,根据现有寿命评估研究从数理统计出发
为轨道交通的信号设备配置不间断电源时,既要保证充足的可靠性,又要尽可能降低成本,在实际工程中应制定定量的评估方法。针对模块化UPS的结构特点和运行方式,将其工作过程近似视为马尔可夫过程,建立其可靠性框图模型进行求解,并运用蒙特-卡罗法对得到的结论进行验证。最后,对UPS运行过程中产生的各种成本进行归纳,提出了一种计及时间成本和运行损耗的UPS经济性评估方法。
针对高速动车组不同轮对间的轮径差引起牵引电机实际发挥功率不一致并由此产生牵引电机温升显著差异的问题,设计了一种采用车控方式的牵引电机“轮径差-功率温升”分析方法,
三电平SiC/Si混合型拓扑能满足低功率损耗的需求,其成本又低于全SiC拓扑,已逐渐应用于各类电力电子装置。由于轨道交通牵引四象限变流器应用场合的开关频率不高,而功率较大,不同的三电平SiC/Si混合型拓扑在损耗和效率上的优劣有待进一步评估。为此,提出一种T型中点箝位三电平SiC/Si混合型拓扑(TNPC-H2),在建立的损耗模型的基础上,推导了其与已有的有源中点箝位三电平SiC/Si混合型拓扑(ANPC-H1)的损耗计算公式,并将2种混合拓扑的成本、损耗和效率进行了理论计算的分析和对比。结果表明TNPC