论文部分内容阅读
【摘要】实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。本文从数学研究性学习在高中的定位、研究性学习与数学教学的关系、数学研究性课题的选择原则等方面,就高中数学研究性学习如何选题作了简述。
【关键词】高中数学 研究性学习 选题
实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。本文从数学研究性学习在高中的定位、研究性学习与数学教学的关系、数学研究性课题的选择原则等方面,就高中数学研究性学习如何选题作了简述。
1 数学研究性学习在高中的定位。数学研究性学习是面向全体高中学生的必修课,而不是只为少数优秀学生开设的课程,它以激发学生主动探索的积极性、培养学生的创新精神为追求目标。鼓励学生介入数学学科前沿的研究,要求学生的研究结果有科学性,但并不强求每个学生的最后研究成果都必须独一无二。强调这样一种课程定位。有助于防治数学研究性学习变为新的数学学科竞赛。
2 研究性学习与数学教学的关系。从初步开展数学研究性学习的实践情况看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。个案显示,因为开展课题研究的需要,学生“用然后而知不足”,常常自觉地加深或拓宽了与课题相关的数学学科课程的学习,有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否可以这样说:数学研究性学习和现有数学学科教学两者之间,不是一个反对一个、一个否定一个,而是互为补充、互相促进的关系。
3 高中数学研究性课题的选择原则。
3.1 价值性原则。选题要有一定的创造价值和社会价值,能促进学生的发展和提高。
3.2 问题性原则。问题是科学思维的起点,让学生运用所学知识通过数学建模去解决问题。
3.3 可行性原则。选择的课题适合学生的能力和知识水平及相关物质条件。
4 高中数学研究性课题的来源。
4.1 生活实践。学生通过自己居住的生活环境及所接触的现实生活,从中发现问题并提出与数学有关的研究性课题。
4.2 社会热点、焦点问题。学生通过新闻媒体及所接触的周围人群了解当前的热门话题;从中提出与数学有关的研究性课题。
4.3 课本中的问题。数学教材是研究课题的重要来源,教师要求学生注意这些研究性学习问题的讨论,因它与课本内容联系密切。
5 高中数学研究性学习的课题类型。
5.1 知识探究型。即对基础知识的研究,这是学生研究课题中的最低层次。
5.2 社会调查型。通过对社会的研究调查,提出研究性学习的课题。
5.3 创造发明型。在学生研究性学习课程中,最高的研究层次应是创新发明。通过自己的努力,以科技创造为目标,进行认真的科技发明尝试,并能取得成果。
5.4 学术研究型。在研究性学习中,经过研究探索写出学术论文,这个层次较高。
6 高中数学的研究性课题选择举例。
6.1 社会生活实践方面:
6.1.1 洗衣服是我们生活中最平常不过的事情,但从中可得出一个研究性课题——“探讨全自动程序下洗衣机在漂洗时用水设计中的数学原理:①为什么设计成等量注水?②分3次注水的合理性是什么?”
6.1.2 调查报亭卖报情况(进价、售价及卖不出去而退回每份报纸赔钱多少)统计一个月的销售情况,为报亭主人决策,使之收益最大。
6.1.3 现在很多人家都安装了太阳能热水器,请你用所学的数学知识说明在各个不同季节,热水器安放的倾斜角为何值时,可使正午时阳光直射热水器,从而取得最大热效率。根据你的研究,你可以向热水器生产厂提何建议?
6.2 热门问题:
①足球运动员在射门时,面对对方守门员,射门时的角度、球速与守门员扑球时的移动速度有何关系,能将球射入球门?足球运动员在何处射门最好(不考虑其它因素)?
②调查保险公司养老保险险种及分红方法。某人在40岁时参加保险,或将应交保额逐年存入银行,假设此人预期寿命为75岁,请你对这两种投资方式进行比较,确定此人是投保收益大,还是存银行收益大。
6.3 深入研究教材,从教材中取得课题;新编的高中数学教材(练习部分)已经为我们提供了大量的研究性学习的课题。
①如在学完数列后,有的学生提出有没有“等和数列”和“等积数列”呢?这样教师可提出研究性课题:“等和数列、等积数列的性质研究”。
②在学完圆锥曲线运一章后,可提出研究性课题:“抛物线的焦点弦的性质研究”和“圆锥曲线的焦点弦的性质研究”。
6.4 其它问题。如最优化问题:
①无益盒子的最大容积问题,用一张边长为a的正方形铁皮,如何制作一个无盖长方体盒子,使其容积最大?
②零件供应站(最省问题);设在一条流水线上有5台机器工作,我们要在流水线上设立一个检验站,经检验合格后才能进行下一道工序,若5台机器的工作效率相同,问检验台放在何处可使移动零件所走的距离之和最小?(所花的总费用最省)如果是n台呢?若5台机器的效率不同又如何呢?
③拍照取景角最大问题:在公路的一侧从A至B有一排楼房,想在公路上的任何一处拍一张正面照,选择公路上的任何点,使拍摄的一排楼房的取最最大。
总之,实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。设置研究性学习的目的在于改变学生以单纯地接受教师传授知识为主的学习方式,为学生的建开放的学习环境,提供多渠道获取知识、并将学到的知识加以综合应用于实践的机会。培养创新精神和实践能力。当前,受传统学科教学目标、内容、时间和教学方式的局限,在学科教学中普遍地实施研究性学习尚有一定的困难。因此,将研究性学习当作一项特别设立的教学活动作为必修课纳入全日制普通高级中学课程计划,这将会逐步推进研究性学习的开展,并从制度上保障这一活动的深化,满足学生在开放性的现实情境中主动探索研究、获得亲身体验、培养解决实际问题能力的需要。
【关键词】高中数学 研究性学习 选题
实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。本文从数学研究性学习在高中的定位、研究性学习与数学教学的关系、数学研究性课题的选择原则等方面,就高中数学研究性学习如何选题作了简述。
1 数学研究性学习在高中的定位。数学研究性学习是面向全体高中学生的必修课,而不是只为少数优秀学生开设的课程,它以激发学生主动探索的积极性、培养学生的创新精神为追求目标。鼓励学生介入数学学科前沿的研究,要求学生的研究结果有科学性,但并不强求每个学生的最后研究成果都必须独一无二。强调这样一种课程定位。有助于防治数学研究性学习变为新的数学学科竞赛。
2 研究性学习与数学教学的关系。从初步开展数学研究性学习的实践情况看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。个案显示,因为开展课题研究的需要,学生“用然后而知不足”,常常自觉地加深或拓宽了与课题相关的数学学科课程的学习,有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否可以这样说:数学研究性学习和现有数学学科教学两者之间,不是一个反对一个、一个否定一个,而是互为补充、互相促进的关系。
3 高中数学研究性课题的选择原则。
3.1 价值性原则。选题要有一定的创造价值和社会价值,能促进学生的发展和提高。
3.2 问题性原则。问题是科学思维的起点,让学生运用所学知识通过数学建模去解决问题。
3.3 可行性原则。选择的课题适合学生的能力和知识水平及相关物质条件。
4 高中数学研究性课题的来源。
4.1 生活实践。学生通过自己居住的生活环境及所接触的现实生活,从中发现问题并提出与数学有关的研究性课题。
4.2 社会热点、焦点问题。学生通过新闻媒体及所接触的周围人群了解当前的热门话题;从中提出与数学有关的研究性课题。
4.3 课本中的问题。数学教材是研究课题的重要来源,教师要求学生注意这些研究性学习问题的讨论,因它与课本内容联系密切。
5 高中数学研究性学习的课题类型。
5.1 知识探究型。即对基础知识的研究,这是学生研究课题中的最低层次。
5.2 社会调查型。通过对社会的研究调查,提出研究性学习的课题。
5.3 创造发明型。在学生研究性学习课程中,最高的研究层次应是创新发明。通过自己的努力,以科技创造为目标,进行认真的科技发明尝试,并能取得成果。
5.4 学术研究型。在研究性学习中,经过研究探索写出学术论文,这个层次较高。
6 高中数学的研究性课题选择举例。
6.1 社会生活实践方面:
6.1.1 洗衣服是我们生活中最平常不过的事情,但从中可得出一个研究性课题——“探讨全自动程序下洗衣机在漂洗时用水设计中的数学原理:①为什么设计成等量注水?②分3次注水的合理性是什么?”
6.1.2 调查报亭卖报情况(进价、售价及卖不出去而退回每份报纸赔钱多少)统计一个月的销售情况,为报亭主人决策,使之收益最大。
6.1.3 现在很多人家都安装了太阳能热水器,请你用所学的数学知识说明在各个不同季节,热水器安放的倾斜角为何值时,可使正午时阳光直射热水器,从而取得最大热效率。根据你的研究,你可以向热水器生产厂提何建议?
6.2 热门问题:
①足球运动员在射门时,面对对方守门员,射门时的角度、球速与守门员扑球时的移动速度有何关系,能将球射入球门?足球运动员在何处射门最好(不考虑其它因素)?
②调查保险公司养老保险险种及分红方法。某人在40岁时参加保险,或将应交保额逐年存入银行,假设此人预期寿命为75岁,请你对这两种投资方式进行比较,确定此人是投保收益大,还是存银行收益大。
6.3 深入研究教材,从教材中取得课题;新编的高中数学教材(练习部分)已经为我们提供了大量的研究性学习的课题。
①如在学完数列后,有的学生提出有没有“等和数列”和“等积数列”呢?这样教师可提出研究性课题:“等和数列、等积数列的性质研究”。
②在学完圆锥曲线运一章后,可提出研究性课题:“抛物线的焦点弦的性质研究”和“圆锥曲线的焦点弦的性质研究”。
6.4 其它问题。如最优化问题:
①无益盒子的最大容积问题,用一张边长为a的正方形铁皮,如何制作一个无盖长方体盒子,使其容积最大?
②零件供应站(最省问题);设在一条流水线上有5台机器工作,我们要在流水线上设立一个检验站,经检验合格后才能进行下一道工序,若5台机器的工作效率相同,问检验台放在何处可使移动零件所走的距离之和最小?(所花的总费用最省)如果是n台呢?若5台机器的效率不同又如何呢?
③拍照取景角最大问题:在公路的一侧从A至B有一排楼房,想在公路上的任何一处拍一张正面照,选择公路上的任何点,使拍摄的一排楼房的取最最大。
总之,实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。设置研究性学习的目的在于改变学生以单纯地接受教师传授知识为主的学习方式,为学生的建开放的学习环境,提供多渠道获取知识、并将学到的知识加以综合应用于实践的机会。培养创新精神和实践能力。当前,受传统学科教学目标、内容、时间和教学方式的局限,在学科教学中普遍地实施研究性学习尚有一定的困难。因此,将研究性学习当作一项特别设立的教学活动作为必修课纳入全日制普通高级中学课程计划,这将会逐步推进研究性学习的开展,并从制度上保障这一活动的深化,满足学生在开放性的现实情境中主动探索研究、获得亲身体验、培养解决实际问题能力的需要。