论文部分内容阅读
数字图像相关方法中,位移场测量的误差大小与算法的迭代次数通常成反比,要获得较低的误差,必须增加迭代次数,从而增加了计算量;而非迭代的方法误差相对较大。为解决这一问题,提出了一种基于BP神经网络的误差补偿方法。选择基于非迭代光流法的位移场测量方法为算法模型,详细分析了该算法本身存在的截断误差,以模拟散斑图的位移测量值及其误差为数据集,用训练好的神经网络误差预测模型对测量结果进行补偿。实验验证结果表明,补偿后的位移测量误差相较原来总体下降了50%左右,测量误差的统计分布也显著下降。