论文部分内容阅读
经典的概率主题模型通过词与词的共现挖掘文本的潜在主题信息,在文本聚类与分类任务上被广泛应用。近几年来,随着词向量和各种神经网络模型在自然语言处理上的成功应用,基于神经网络的文本分类方法开始成为研究主流,卷积神经网络(Convolutional Neural Network,CNN)已成为目前一种主流的文本分类模型。本文通过CNN和概率主题模型PLSA(Probabilistic Latent Semantic Analysis)、LDA(Latent Dirichlet Allocation)在文本主题分