论文部分内容阅读
本论文针对海量移动学习资源元数据的分散,难以检索的难题,提出基于自组织特征映射网络(SOM )的移动学习资源元数据聚类萃取算法,该算法将传统的数据库元数据进行合理的量化处理,形成表征移动学习元数据的四元组(资源编号,科目等级,学科等级,资源相似度),并且根据用户需求,通过调整权值四元组后三个个关键字所占比例,实现扩大或者缩小范围。最终利用Matlab以高中物理的移动学习元数据为例实现该算法的仿真,进行多赋值聚类,其聚类萃取资源的准确度较高,能够满足一般用户对该移动学习资源的需求。