论文部分内容阅读
针对一般社会网络社区发现算法仅考虑各节点的邻接关系,所划分的社区仅为一元关系社区,不能代表社区成员的语义相似性且无法处理具有多元语义话题的语义社会网络社区发现问题,提出基于话题因子分析的语义社会网络社区发现算法.该算法将节点的多元信息抽象为话题,先以多元话题综合因子作为节点话题信息度量,以节点间的话题密度差异作为节点聚合方向,构建初始社区结构;再以最大化社区内部话题信息相似度和最小化社区外部话题信息相似度为目标建立语义社区发现的目标函数及节点变动的代价函数;再以初始社区结构和代价函数作为初始解和判断准则,