论文部分内容阅读
建立高精度的位移预测模型对滑坡的提前预报具有重要意义,然而以往的研究多是选用静态预测模型,无法满足滑坡的动态特性。鉴于此,以三峡库区新滩滑坡为例,选用了近期较为流行的长短时记忆网络(LSTM)模型来对滑坡滑动前的累积位移进行动态预测。首先选用经验模态分解法(EMD)将滑坡累积位移分解成趋势项和周期项,然后利用多项式函数预测趋势项位移;再利用动态LSTM模型预测周期项位移;最后将各分量位移累加得到最终的模型计算值。结果表明:LSTM模型预测结果的均方根误差为17.07 mm,相关性系数达0.999,具有较高