论文部分内容阅读
在假定C-S双液浆符合宾汉姆流体的基础上,考虑双液浆黏度时变性与空间效应,并认为盾构隧道管片注浆符合球形渗透模型,通过平衡方程与Dupuit-Forchheimer公式,对宾汉姆流体壁后注浆渗透扩散规律进行理论分析,得到C-S双液浆扩散半径计算公式以及管片受力计算公式。通过具体实例分析了注浆压力、注浆管内浆液流速以及C-S双液浆黏度参数A与参数Y对浆液扩散半径及管片受力的作用,对比了不同注浆参数对注浆效果的影响。结果表明:浆液扩散半径随注浆压力与注浆管内浆液流速的增大而增大,随黏度参数A与参数Y增大而减小,其中注浆压力与参数Y对浆液扩散影响较大,注浆管内浆液流速与参数A对浆液扩散影响较小;管片受力随注浆压力与注浆管内浆液流速增大而增大,但注浆压力的影响效果不断增大而后趋于稳定,注浆管内浆液流速的影响效果不断减弱而后趋于稳定;管片受力随参数A与参数Y增大而减小,其中参数A对管片受力的影响呈负线性关系,影响效果较弱,参数Y对管片受力的影响呈现“三段式”变化——缓慢减小阶段、加速减小阶段以及快速减小阶段,影响效果明显。
On the basis of assuming that CS double slurry matches Bingham fluid, considering the viscosity degeneration and space effect of double slurry, it is considered that the grouting of shield tunnel segment conforms to the spherical infiltration model. Through the equilibrium equation and Dupuit-Forchheimer formula, Bingham fluid wall after grouting seepage diffusion theory of theoretical analysis to obtain the CS double slurry diffusion radius calculation formula and the force of the pipe. The effects of different grouting parameters on the grouting effect were analyzed by using concrete examples. The effects of grouting pressure, slurry flow velocity in the grouting pipe, viscosity parameters A and parameters Y on slurry diffusion radius and force on the chip were analyzed. The results show that the diffusion radius of grout increases with the increase of grouting pressure and slurry flow rate in grouting tube, and decreases with the increase of viscosity parameter A and parameter Y. The grouting pressure and parameter Y have a great influence on slurry diffusion, Grouting pipe slurry flow rate and parameter A less influence on the slurry diffusion; pipe stress with grouting pressure and grouting pipe slurry flow rate increases, but the effect of grouting pressure increases and then tends to be stable, The effect of slurry flow rate in the grouting pipe is weakened and then tends to be stable. The stress of the pipe decreases with the increase of the parameter A and the parameter Y. The parameter A has a negative linear relationship with the force exerted on the segment, and the effect is weak , The influence of parameter Y on the force of the plate shows “three-stage ” change - the stage of slow decrease, the stage of acceleration reduction and the stage of rapid decrease, the effect is obvious.