论文部分内容阅读
概率聚类的算法已经广泛地应用于聚类分析领域,但是这些算法都没有回答如何选择一个最佳的聚类个数的问题。该文首先分析了通用的确定概率聚类个数的方法,然后针对蒙特卡罗交叉验证算法不能解决后验概率分散的问题,提出一种改进的蒙特卡罗交叉验证算法(iMCCV)。实验结果证明该算法可以有效地确定最佳K值。