聚多巴胺修饰纳米SiO2颗粒

来源 :化工进展 | 被引量 : 0次 | 上传用户:lionschen2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纳米SiO2颗粒粒径小、比表面积大,广泛用做填料、涂料、催化剂等.由于纳米SiO2颗粒表面能高、亲水性强、易团聚、在聚合物基体中的分散性差,需要对其表面修饰改性.多巴胺(DA)分子具有类似贻贝分泌的黏附蛋白的结构单元儿茶酚和活性基团氨基,在碱性条件下,通过氧化自聚可在多种材料表面沉积,形成富含活性基团的聚多巴胺(PDA)包覆层,可进行二次修饰,是近期发展的一种新型表面修饰方法.本文针对纳米SiO2颗粒表面的PDA功能化修饰,分析了该修饰方法的工艺特点及优势,阐述了SiO2@PDA纳米颗粒及SiO2/PDA共聚复合颗粒的制备路线及应用,总结了SiO2@PDA颗粒表面二次功能化修饰的研究进展.分析表明,SiO2@PDA表面易于接枝功能化聚合物分子,并可负载功能纳米颗粒,有利于拓展SiO2纳米颗粒的多功能应用.关于多巴胺与SiO2纳米颗粒的表面反应机制、沉积动力学、聚合机理等仍需进一步研究.
其他文献
传统工业合成氨Haber-Bosch工艺条件要求严苛,并且存在高能耗以及高CO2排放问题.电催化氮气还原(nitrogen reduction reaction,NRR)是一种在常温常压下利用氮气合成氨的新工艺,具有成本低、反应条件温和、环境友好等优势.但该反应所需过电位较高,水解析氢反应(hydrogen evolution reaction,HER)竞争明显,导致电流密度和选择性较低,无法达到工业应用水平.本文在介绍电催化NRR合成氨的反应机理的基础上,主要从氮气分子的吸附活化和电还原阶段反应过程出发
生物质在高温无氧条件下热解可以生成富含高附加值化学品和燃油成分的生物油.有效分离技术和高效提取手段的发展是生物油质量提升的关键.基于此,本文在介绍生物油性质与生物质快速热解工艺的同时,对目前国内外的生物油分离技术如蒸馏、液-液萃取、柱色谱、超临界萃取、膜分离等进行了较为详细的分析和评述.常规蒸馏和溶剂萃取等技术,工艺成熟、操作简单,但存在生物油的热敏性差、萃取剂回收难度大和污染严重等问题;分子蒸馏技术分离过程安全环保,但工艺复杂,设备成本高;超临界萃取和膜分离等技术安全环保,技术成熟,具有较大的潜力.文章
丙烯是一种重要的有机化工原料和石油化工原料中间体,近年来在国内外市场的需求量持续增长.丙烷直接脱氢制丙烯技术具有收率高、技术成熟、经济环保等优点,备受研究者们的广泛关注.文中综述了丙烷直接脱氢制丙烯用单原子催化剂的研究进展,介绍了单原子催化剂的丙烷脱氢反应机理,探讨了单原子催化剂的失活行为,总结了活性组分、助剂及载体对单原子催化剂催化丙烷脱氢性能的影响,并分析讨论了单原子催化剂在当前研究中存在的问题.最后针对单原子催化剂虽具有优异的丙烯选择性和稳定性,但存在丙烷脱氢活性依旧不足的问题,提出了调控单原子催化
以聚丙烯腈(PAN)超滤膜为基底,在均苯三甲酰氯(TMC)和间苯二胺(MPD)界面聚合反应过程中引入聚乙二醇(PEG),制备聚酰胺(PA)/PEG反渗透复合膜.利用傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、场发射扫描电镜(FE-SEM)和原子力显微镜(AFM)等对膜的结构和物化性质进行了表征.考察了PEG分子量、PEG加入量、热处理温度及时间对膜反渗透性能的影响,并系统考察了膜对十二烷基硫酸钠(SDS)、十二烷基三甲基溴化铵(DTAB)以及牛血清蛋白(BSA)三种不同荷电性典型污染物的耐受性
淀粉是一种可再生的天然高分子,具有生物相容性好、可生物降解、无毒等优点,而水凝胶是具有吸水、保水性能的亲水聚合物网络.本文对近5年来淀粉基水凝胶的研究成果进行了归纳总结,以期为科研工作者提供淀粉基水凝胶的最新研究进展.文章分为如下部分:第一部分介绍了淀粉基水凝胶的研究背景;第二部分从淀粉基水凝胶的组成、形成原理、环境响应性等方面进行归纳总结;第三部分重点介绍了淀粉基水凝胶在水体净化、药物缓释、3D打印、农业和再生医学方面的应用.由此可知,目前淀粉基水凝胶在传感器、光电材料等方面的应用研究较少,同时其性能还
具有C3对称性的三甲基三嗪(TMT)分别与2,4,6-三(4-醛基苯基)-1,3,5-三嗪(TFPT)、均三苯甲醛(TFB)和四氟对苯二甲醛(TFBA)在酸或者碱催化条件下发生Aldol缩合反应,成功构建出3种新型的碳碳双键桥联的共价有机框架材料(TMT-TFPT-COF、TMT-TFB-COF、TMT-TFBA-COF).本研究通过Material Studio、ZEO++等软件对材料进行结构的精确解析,并结合粉末X射线衍射(PXRD)、傅里叶红外光谱(FTIR)等表征手段确定了材料的结构、连接方式及其
采用增材制造工艺方法进行具有高比强度、密度小等优良性能连续碳纤维增强金属基复合材料的直接制备.研究了连续碳纤维表面改性、路径搭接率、打印喷头温度、基板温度、打印速度等过程处理方法及工艺参数对所制备金属基复合材料抗拉强度的影响.研究结果表明,对连续碳纤维原材料实施表面改性处理,可以实现制备过程中熔融金属基体与连续碳纤维之间的良好浸润复合,以提高复合材料的抗拉强度;增大路径搭接率,可以有效提高增材制造复合材料内部纤维的体积占比,从而增大其抗拉强度;升高打印喷头温度、基板温度、打印速度,可以减小熔融金属表面张力
兼具良好孔隙率和原位任意塑形固化的可注射复合多孔骨修复材料在临床不规则骨缺损的治疗方面显示出巨大的优势.本研究通过优化双组分设计,以水为发泡剂制备可注射纳米羟基磷灰石/聚氨酯(nHA/PU)复合多孔支架.利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、力学测试及Gillmore针测试等手段对制备的支架进行结构形貌、化学组成、力学性能和固化时间表征.结果表明,本研究制备的可注射nHA/PU复合多孔支架孔隙率高、孔隙贯通性好,孔径分布在100~700μm,适宜细胞和组织向孔
随着代谢工程技术的进步,越来越多微生物细胞工厂可用于化学品发酵生产.微生物细胞生产化学品具有生产条件温和、环境友好等优势,是实现化学品绿色可持续生产的重要手段.为了提高微生物细胞工厂的产量、得率和生产强度,传统代谢工程手段主要采用基因过表达或基因敲除方式增大目标代谢路径碳代谢流.然而由于代谢流调控精度不足,易导致细胞生产能力下降.本文主要针对微生物细胞工厂碳流调控中存在的瓶颈问题,从代谢流改造靶点选择、细胞生长与产物合成碳流平衡、副产物路径与产物合成竞争、产物合成效率强化四个角度,系统综述微生物细胞工厂碳
智能印迹聚合物在外部环境刺激下对模板分子具有响应性分子识别吸附能力,在吸附分离、药物传递、检测、固相萃取、催化等应用领域有着广阔的前景.本文首先对分子印迹聚合物进行了综述并指出在外场强化过程中常规分子印迹聚合物很难通过改变结合位点来控制结合特性的问题,针对这个问题进而提出具有柔性位点的智能响应型印迹聚合物.随后以具有不同响应功能的智能印迹聚合物为出发点,对磁、热、光、pH、生物大分子等单因子及双重因子响应功能印迹聚合物在外场强化过程中的响应与识别机制分别进行分析与总结,并综述了近些年来这些智能印迹聚合物在