论文部分内容阅读
花卉识别在生活中有重要的应用价值,传统的花卉识别方法存在识别准确率低、泛化能力较弱等问题。针对这些问题,本文提出一种加入注意力机制的ResNet34网络模型,在ResNet34第一层卷积层和各残差块后加入通道注意力机制、空间注意力机制,并使用迁移学习训练网络模型。实验表明,在花卉数据集上ResNet34比AlexNet、VGG-16、GoogLeNet识别准确率更高,加入注意力机制并使用迁移学习的ResNet34模型的识别准确率比原模型提高了6.1个百分点,比仅使用迁移学习的原模型提高了1.1个百分