论文部分内容阅读
裂缝对公共设施而言存在着安全隐患,因此裂缝检测是公共设施进行维护的重要手段.由于裂缝图像中存在噪声、光线、阴影等因素干扰,神经网络在训练时极易被影响,导致预测结果出现偏差,降低预测效果.为减少这些干扰,设计了一个并行注意力机制,并将其嵌入到UNet网络的解码部分,进而提出了并行注意力UNet(parallel attention based UNet, PA-UNet).该方法分别从通道和空间2个维度加大裂缝特征权重以抑制干扰,然后对这2个维度生成的特征进行融合,以获得更具互补性的裂缝特征.为了验证