论文部分内容阅读
网络故障的关联性传播可能导致网络故障数据包含大量冗余信息,影响诊断精度和处理效能。该文根据故障数据的特点,将粗糙集理论与支持向量机(SVM)相结合,采用基于邻域粗糙逼近的数值型属性约简算法进行快速高效的故障诊断,避免经典粗糙集理论中离散化误差的影响,缩减数据存储空间,降低SVM训练模型的复杂度,提高训练速度。ROC性能曲线分析结果表明,该方法具有良好的泛化能力。