论文部分内容阅读
为建立高精度的边坡位移预测模型,采用相空间重构(PSR)将边坡位移时间序列数据转换为多维数据,同时构造小波核函数改进的支持向量机模型,建立PSR-WSVM模型并应用于边坡位移预测。将PSR-WSVM模型预测结果与传统支持向量机(SVM)模型、小波支持向量机(WSVM)模型和基于相空间重构的支持向量机(PSR-SVM)模型预测结果进行对比,通过平均绝对误差(MAE)、平均绝对误差百分比(MAPE)和均方根误差(RMSE)3个精度评价指标验证PSR-WSVM模型的可行性。工程实例结果表明,PSR-WSV