论文部分内容阅读
Accurate nuclear classification(e.g., grading of renal cell carcinoma(RCC) biopsy images) is important to better understand fundamental phenomena such as tumor growth. In this paper, an automated pipeline is proposed to quantitatively analyze RCC data. A novel segmentation methodology is firstly used to delineate cell nuclei based on minimum description length(MDL) constrained B-spline curve fitting. From the obtained segmentations, thirteen features are then extracted based on five types of characteristics. These features are used to classify cell nuclei in biopsy images. Associations among nuclei are computed and represented by graphical networks to enable further analysis. Finally, a support vector machine(SVM) based decision-graph classifier is introduced to classify the biopsy images with the purpose of grading. Experimental results on real RCC data show that our SVM-based decision-graph classifier achieves 95.20% of classification accuracy while the SVM classifiers achieve 93.33% of classification accuracy.
Accurate nuclear classification (eg, grading of renal cell carcinoma (RCC) biopsy images) is important to better understand fundamental phenomena such as tumor growth. In this paper, an automated pipeline is proposed to quantitatively analyze RCC data. A novel segmentation methodology is first used to delineate cell nuclei based on minimum description length (MDL) constrained B-spline curve fitting. From The obtained segmentations, thirteen features are then extracted based on five types of characteristics. These features are used to classify cell nuclei in biopsy images. Associations Among the nuclei are computed and represented by graphical networks to enable further analysis. Finally, a support vector machine (SVM) based decision-graph classifier is introduced to classify the biopsy images with the purpose of grading. Experimental results on real RCC data show that our SVM-based decision-graph classifier achieves 95.20% of classification accuracy while the SVM classifiers achieve 93.33% of classification accuracy.