论文部分内容阅读
提出了一种动态环境下多个机器人获取合作行为的强化学习方法,该方法采用基于瞬时奖励的Q-学习完成单个机器人的学习,并利用人工势场法的思想确定不同机器人的学习顺序,在此基础上采用交替学习来完成多机器人的学习过程。试验结果表明所提方法的可行性和有效性。
This paper proposes a reinforcement learning method for multiple robots to acquire cooperative behavior under dynamic environment. The method uses Q-learning based on instantaneous reward to complete the learning of single robot and uses the idea of artificial potential field method to determine the learning sequence of different robots. Based on the use of alternating learning to complete multi-robot learning process. The test results show the feasibility and effectiveness of the proposed method.