论文部分内容阅读
深层地下卤水资源量的评价是国内外迄今尚未很好解决的课题,由于深部地质及水文地质参数难以准确获取,因此也难以对深层卤水资源量进行正确评价。从深层卤水开采量的时间序列出发,提出了一类基于神经网络的评价模型。首先分析了卤水开采量的时间序列特点,再建立了神经网络的拓扑结构,并设计了相应的评价算法,最后通过对某储卤构造的单井评价实例,对模型进行了验证。与传统的ARMA时间序列模型相比,其预测性能更好,对剩余可采资源量计算结果也更为准确。