论文部分内容阅读
使用二维器件模拟软件Medici,对SiC_(1-x) Ge_x/SiC异质结的光电特性进行了模拟.设计了N型重掺杂SiC层的厚度为 1μm,P型轻掺杂SiC_(1-x) Ge_x/SiC层厚为 0. 4μm,二者之间形成突变异质结.在反向偏压 3V、光强度为 0. 23W /cm2的条件下,p-n+SiC0. 8Ge0. 2 /SiC和p-n+SiC0. 7Ge0. 3 /SiC敏感波长λ分别可以达到0. 64μm和 0. 7μm,光电流分别为 7. 765×10-7 A/μm和 7. 438×10-7 A/μm;为了进一步提高SiC1-xGex/SiC异质结的光电流,我们把p-n+两层结构改进为p i n三层结构.在同样的偏压、光照条件下,p i nSiC0. 8Ge0. 2 /SiC和p i nSiC0. 7Ge0. 3 /SiC的光电流分别达到 1. 6734×10-6 A/μm和 1. 844×10-6 A/μm.
The photoelectric properties of the SiC_ (1-x) Ge_x / SiC heterojunction were simulated using a two-dimensional device simulation software Medici.The thickness of the N-type heavily doped SiC layer was designed to be 1μm and the P-type lightly doped SiC_ (1 -x) Ge_x / SiC layer thickness of 0. 4μm, a mutation between the formation of heterojunctions in the reverse bias 3V, light intensity of 0. 23W / cm2 conditions, p-n + SiC0 8Ge0. 3 / SiC Sensitive wavelength λ can reach 0.64μm and 0. 7μm, photocurrent of 7. 765 × 10-7 A / μm and 7. 438 × 10- In order to further improve the photocurrent of the SiC1-xGex / SiC heterojunction, we improved the p-n + two-layer structure into a pin three-layer structure. Under the same bias voltage and illumination conditions, 2 / SiC 和 pi nSiC0. 7Ge0. 3 / SiC photocurrent reached 1. 6734 × 10-6 A / μm and 1. 844 × 10-6 A / μm respectively.