变式训练在高中数学解题教学中的应用

来源 :中学生数理化·教与学 | 被引量 : 0次 | 上传用户:gongwj123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:数学是极具逻辑性的学科,逻辑性思维是数学解题的关键,教师要注重在数学解题教学中运用“一题多变”、“一题多用”、“多题归一”的方法,引导学生思考数学题目的“核心”,从题目中“提炼”反映数学的本质。
  关键词:变式训练 高中数学 解题教学
  在数学教学中发现,学生平时作业、练习中会出现各种各样的错误,教师运用何种训练方式帮助学生纠正错误至关重要。在数学解题教学中运用变式训练,针对不同错误采用不同的训练方法,能够使学生触类旁通,在减轻训练压力的情况下有效地提高教学质量。
  下面结合自己的教学实践谈点体会。
  一、变式训练的含义
  数学解题按照类型主要可以分为解探究题、解变式题、解标准题三大类。如果将数学标准题看作是数学知识中最基础的表现形式,变式题就是介于标准题和探究题之间的数学题目,是对数学基础知识向探究活动逐渐过渡的数学题目。变式训练的核心就是将数学公式、定理等进行改变,合理构造的一系列变式,展示数学知识产生及发展的过程,突破原有数学解题思维的障碍,形成新的数学思维训练模式。
  二、变式训练在高中数学解题教学中的应用
  1。一题多变,提高学生的思维深度
  一题多变,指的是以一道数学母题演变出许多道子题目。在数学解题教学中,教师根据学生的认知程度将一道经典易错的数学题目改变其条件或结论,演变成具有不同解题思路和方法的数学题,锻炼学生从不同的角度理解题目,通过对改变的数学题目的联系,提高学生的思维深度。因此,在数学解题教学中,教师要打破学生传统的学习模式和学习思维,不能单纯地为解题而解题,而是要在同类型题目中找到本质规律,以不变应万变。
  例1 已知圆O的方程为:x2 y2=r2,求经过圆上一点M(x0,y0)的切线方程。
  变式1:已知M(x0 ,y0)在圆O:x2 y2=r2的内部(异于圆心O),则直线x0x y0y=r2与圆O的交点个数是多少?
  变式2:已知M(x0 ,y0)在圆O:x2 y2=r2的外部,你能否探索出直线x0x y0y=r2的几何意义?
  变式3:已知M(x0 ,y0)在圆O:x2 y2=r2的内部(异于圆心O),求证:过M点的弦(除直径外)的两个端点在圆上两切线的交点轨迹为直线x0x y0y=r2。(本题难度深入,适用于课堂或课下探究性问题)
  该例题旨在通过研究直线与圆的位置关系,让学生学会解决求过已知圆上一点的切线问题。教师巧妙设计题组,通过变式,根据学生的接受情况,总结出不同题目的相同规律,提高学生的解题技巧,深化学生对教学内容的理解。
  2。一题多解,扩展学生的思考范围
  变式训练的另一种方法就是一题多解。一题多解能够充分激发学生的数学思维,在解题中注重各项条件的联系和运用,避免因思维受限而造成解题过程中拘泥于某一种方法上,造成解题思路狭窄。一题多解的变式训练方法,能够开发学生的创造力,改变原有数学解题的思维定式,培养学生思维的灵活定和发散性。
  例2 如果sin2x cosx a=0有实根,试分析a的取值范围。
  解法1:将已知式子变形为:a=cos2x-cosx-1,设a为x的函数,根据题干可知:cosx∈[-1,1],a=(cosx-12)2-54,当cosx=12时有最小值,此时a=-54;当cosx=-1时有最大值,此时a=94-54=1,因此函数值域为a∈[-54,1]。反之,当a在[-54,1]之间取值时,cosx一定在[-1,1]之间取值,与x有实数解相对应。
  解法2:令cosx=t,原方程化为:1-t2 t a=0,则得到函数f(t)=-(t2-t 14) 54 a,则方程有[-1,1]中的实数解表明二次函数f(t)的图象抛物线在[-1,1]中与t轴有交点。将数转化为形,运用图形解题,当抛物线与t轴在[-1,1]区间内有一交点,当且仅当f(-1)f(1)≤0时,也就是(1-a)(-1-a)≤0,以此得出-1≤a≤1;当抛物线与t轴在[-1,1]区间内存在两个交点,且a∈[-1,1]U[-54,1]=[-54,-1]时,y=f(t)与t轴在[-1,1]内存在交点,原方程存在实数解。
  3。多题归一,培养学生的思维能力
  多题归一与一题多变、一题多解的训练模式是一致的,是数学变式训练中的重要方法之一,有利于培养学生的数学思维能力,让学生在变化的数学题目中探索出本质规律,在以后的解题中能够通过题干看出解题的关键。
  纵观高中数学试题,我们可以看出数学试题不论怎么变,考查的都是数学基本理论概念知识以及数学通法,只是在原有数学规律和常规解题模式上进行变换。例如,可以利用直线方程带入圆锥曲线方程的方法,设计成考查一元二次方程知识的数学试题,还能够利用方程根与系数的关系再进行改变成为新的数学试题,但是实质上都是考查学生对解析几何基本方法的掌握,这就是数学试题“多题归一”的具体表现。
  例3 求和:x 2x2 … nxn,(x≠0)
  例4 设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3 b5=21,a5 b3=13。(1)求{an},{bn}的通项公式;(2)求数列anbn的前n项和Sn。
  解析:在这两道试题的解题思路中,都运用“错位相减法”:若数列{Cn}满足Cn=an·bn,其中{an}是等差数列,{bn}是等比数列(公比≠1),则数列{Cn}(等比数列)的前n项和可以使用“错位相减法”求得。
  利用“多题归一”、“多题一解”,让学生在熟悉等比数列求和公式的基础上,拓展“错位相减法”这一解题方法,让学生在学习实践中对已有的数学思想方法进行归纳总结,再利用变式题进行进一步的扩展和深化,从而自然和谐地形成一定的解题思路和技巧。
  高中数学试题中通法通性的表现形式多种多样。例如,运用配方、作图、分类讨论等方法在二次函数闭区间上求值,这就表示高中数学试题的解决需要运用“多题归一”的训练方法,对具有普遍规律的数学试题进行归纳总结,在总结过程中发现数学解题的基本思路与技巧。
  总之,变式训练是以万变不离其宗为原则,在不同的数学题目中对数学公式、原理、定理、概念等从不同角度和深度进行改变,使其内容发生变化并得出不同的结论。变式训练在高中数学解题教学中具有举足轻重的作用,教师在变式训练教学中要引导学生抓住数学题目的本质,根据学生的认知规律开展教学,切忌盲目地开展变式教学。
  参考文献
  李健。 “一题多解”与“多题一解”在高中数学教学中的价值研究与实践[D]。苏州大学,2012。
其他文献
班上60多名学生,家庭情况迥异,学习成绩参差不齐,性格禀赋也各有不同……作为他们的班主任,无论课上还是课下,无论学习还是生活,我都要为他们做好保驾护航的工作。可是,什么样的爱才是他们真正需要的呢?  程子齐、王名扬家境优越,深得爷爷奶奶宠爱,如同小皇帝一般,饭来张口,衣来伸手,长此以往动手能力就越来越差了。在学校里,他们不会收拾书包,就餐总是弄脏衣服,做作业速度比别的同学慢,跑步也跟不上节奏……于
爱因斯坦说:“提出一个问题比解决一个问题更重要。”质疑是探究新知识的开始,也是创新的动力与源泉。增强问题意识,帮助学生提出问题,是培养学生提出问题能力的前提。问题意识是指一个人容易进入一种问题情境中的心理倾向。即一个人经常想到一些问题难以解决,产生一种有目的的但不知如何达到的心理困境。如果当事人不进入情境,没有感觉到心理困境,则任何问题也构不成问题。在教学活动中,教师要鼓励学生质疑求疑,另辟蹊径,
我的同桌其貌不扬、不善言辞.可他有句口头禅却被我们全班同学熟知,那就是“小事一桩”.不管是谁有了困难,他总第一个冲上前去,竭尽全力地帮忙到底.人家感谢他,他总是嘿嘿一
期刊
“吴怡青学习成绩一般,她做大队委员我不服气!”“吴怡青太凶,像只母老虎!”“戈老师偏向她,为什么不让章舒妍当呢?”……小小的吴怡青连升三级,居然做起了大队委员,我们实在
摘要:随着教育事业的发展,对教学质量与教学方法等方面都有了更高的要求。初中化学是一门实践性较强的科目,其教学方法对教学质量的影响程度远高于其他理论性科目。本文主要分析了任务驱动教学法在初中化学教学中的应用。  关键词:任务驱动教学法 初中化学 教学  一、任务驱动教学法的界定  目前,任务驱动教学法普遍应用于化学教学中,教师可以通过对学生的实际学习情况进行分析,并依据当前所需要教学的内容以及之后需
英国作家D.H.劳伦斯的最后一部小说《查特莱夫人的情人》一出版就备受争议,在相当长时间内被视为禁书。评论多集中在道德伦理的层面上。人类必定要追求真、善、美,唯有如此才
刘老师,或许是“师道尊严”,亦或是您认为“教不严,师之惰”的缘故,您总是不苟言笑,成天板着面孔,对同学们冷若冰霜.因此,我们都不敢亲近您,有什么心里话更不敢跟您说,即使有
我们的校园一角,某些植物正在举行演讲会,我躲在一旁,悄悄地在听着……  小树1号:别看我现在的模样这么娇小,等我长大了,能为人类遮风挡雨呢!唉,人类也真是的,一说到这个我就心烦,没事做做环保嘛,为什么老是污染大气,到最后,还不是让我来收拾烂摊子。人类啊,以后,可不许这样啦!  小白花:看这里!看这里!瞧我长得,沉鱼落雁,闭月羞花……哦,忘了,我本来就是花嘛!你瞧我嫩黄的心,洁白的羽衣,再配上我那翠
期刊
笔者曾对谷城县乡村教师的现状进行过摸底调研,结果堪忧。一是乡村教师年龄结构老化,50岁以上的超过40%,40岁以上的超过70%,乡村教师队伍严重缺少新鲜血液,缺乏活力。二是体音美教师紧缺。  更重要的是乡村教师的知识和技能亟需提高。全县中小学教师的来源主要有三个:民转公教师,年龄大多在50岁以上,学历多为初中毕业;1977级至1996级的中师生,年龄在40岁以上的,是目前谷城教育的中坚力量;新机制
期刊
问:管老师,您为什么不上“作前指导课”而上“作后讲评课”,您的作后讲评课是怎么上的?  一  我上作文课,从来不上严格意义上的“作前指导课”,而是清一色的“作后讲评课”。现在,我更愿意称之为“作后指导课”。  我在《管建刚谈“写作素材”》(参见本刊2017年第2期)一文里讲过,每个人都有一个属于自己的“写作金矿”。军旅作家的“写作金矿”一般是军旅生活,教师作家的“写作金矿”一般是教育生活,市政府秘
期刊