论文部分内容阅读
行人再识别是指在具有不重叠视域的摄像机监控网络中根据行人外观进行身份关联的任务.由于在视频监控系统中具有广泛的应用前景,受到了计算机视觉与机器学习领域的广泛关注.当前的行人再识别研究主要关注从行人图像中提取判别性的特征描述子或学习距离度量.然而不同摄像机视角下行人的外观常常存在很大差异,同一摄像机下还会有行人外观相近的情况,这使得特征描述子或距离度量的表达能力受到了很大的影响.为了增强它们的表达能力并提升行人再识别的准确率,提出了一种基于跨视角判别性词典嵌入的行人再识别算法.在该算法中不仅学习了跨视