【摘 要】
:
随着深度学习的兴起,行人重识别逐渐成为计算机领域的热门话题.它通过给定的查询行人图像进行跨摄像机检索,找出与查询身份相匹配的行人.然而,由于受到不同视角下的背景、光照等因素影响,采集到的行人图像中存在大量的难样本,利用这些难样本训练得到的模型识别性能低下,缺乏鲁棒性.因此,为了提高模型对难样本的鉴别能力,设计了一种新颖的通过混淆因子合成具有难样本信息图像的方法.对于每批输入图片,通过相似性度量寻找每张图像对应的难样本,结合混淆因子合成具有难样本信息的新图像再以有监督的方式促使模型挖掘难样本信息,从而提高模
【机 构】
:
昆明理工大学信息工程与自动化学院,昆明 650504
论文部分内容阅读
随着深度学习的兴起,行人重识别逐渐成为计算机领域的热门话题.它通过给定的查询行人图像进行跨摄像机检索,找出与查询身份相匹配的行人.然而,由于受到不同视角下的背景、光照等因素影响,采集到的行人图像中存在大量的难样本,利用这些难样本训练得到的模型识别性能低下,缺乏鲁棒性.因此,为了提高模型对难样本的鉴别能力,设计了一种新颖的通过混淆因子合成具有难样本信息图像的方法.对于每批输入图片,通过相似性度量寻找每张图像对应的难样本,结合混淆因子合成具有难样本信息的新图像再以有监督的方式促使模型挖掘难样本信息,从而提高模型鲁棒性.大量对比实验表明,所提方法在主流数据集上达到了较高的识别率,消融实验证明了所提方法的有效性.
其他文献
通过再处理煤矿生活污水,水源经过处理后与井下作业对消尘洒水的水质要求相符,能够有效减少水资源的浪费以及水费的开支,实现成本以及水资源的节约,对于企业经济效益的提高有着非常重要的作用.本文在对煤矿生活污水特征进行分析的基础上对当前应用较为普遍的煤矿生活污水处理技术应用进行了分析、探讨,希望能够为提高煤矿生活污水处理水平提供有益参考.
以3702大采高综采工作面回采为研究背景,对导致采面煤壁片帮发生原因进行分析,并针对性的提出片帮防治技术.现场应用后,采面煤壁片帮问题得以显著改善,片帮次数以及深度均大幅降低,虽然偶有片帮发生但是不会给采面正常回采带来威胁.
为了保证巷道安全快速掘进,提高巷道过地质构造、采空区等应力区时围岩稳定性,9101回风顺槽在过应力区时对原顶板支护进行优化,提出了“L型钢带+矩形工字钢棚”联合支护设计,通过实际应用效果来看,采取联合支护措施后,控制了应力区顶板破碎、垮落现象,巷道下沉量降低至0.12m以下,取得显著应用成效.
基于煤层气分布与赋存的客观实际规律,介绍了煤层气赋存的基本内容,分析了水动力特征对煤层气赋存的控制作用,并结合相关实践经验,分别从地质演变以及回返抬升角度探讨了地质条件对煤层气赋存的控制作用,以期对煤气层赋存分析有所裨益.
针对蒸馏装置中主蒸馏塔存在塔盘支撑横梁及桁架腐蚀严重、烟囱层变形、支持座腐蚀塌陷以及塔内腐蚀区域明显增多等问题,基于主蒸馏塔腐蚀现状,对其进行了深入的检修检查工作,并尝试提出新的思路,通过使用添加剂、升级相关材料建立比较理想且可行的防腐蚀策略,以确保蒸馏装置的安全运行.
瞬态图像是一种场景对光脉冲进行响应的快速图像序列.通过对时间维度信息的捕获,瞬态图像实现了对时域中蕴藏的场景信息的有效利用,而非视距成像是瞬态图像在场景解析领域中最典型的应用.非视距成像是一种对视线范围外物体或场景进行成像的技术,近几年在国内外广受关注.本文根据不同的成像机理,对瞬态图像的不同成像方式进行分类,并根据算法原理或实现效果的不同,对比了多种基于瞬态图像的非视距成像算法.最后总结了基于瞬态图像的非视距成像技术面临的挑战,并展望了未来的发展方向.
为分割灰度不均图像和各类噪声图像,本文提出了一个结合混合符号压力函数的活动轮廓模型.首先,利用图像的全局和局部信息,根据当前活动轮廓的位置,构造一个混合符号压力函数,该函数通过自适应权值线性组合一个全局压力项和一个局部压力项,得到图像相对于当前活动轮廓的混合压力.然后,结合此混合符号压力函数,构造活动轮廓的演化方程,最后通过交替迭代算法求解模型.实验中采用不同的人造、医学和自然图像对模型进行了测试,实验结果表明,该模型对初始轮廓有较强的鲁棒性,能有效分割灰度不均图像及各类噪声图像,并且相对于其他活动轮廓模
遥感影像在实际土地监测中其检测精度会受到影像数据中噪声的影响.为了提升变化检测方法的精度,本文提出了一种结合多尺度特征提取和注意力机制的孪生卷积神经网络的变化检测方法.首先使用含有不同膨胀率的空洞卷积和空间注意力模块组成多尺度特征提取模块;然后将同一卷积层的特征图相减获取前后两时期影像的差异特征图,并使用通道注意力机制增强特征提取效果;最后通过全连接层输出变化检测结果.将本文方法与目前已有的一些变化检测方法在未添加噪声的原始遥感影像数据和添加噪声后的遥感影像数据上进行对比分析.结果表明:(1)支持向量机这
比较同一场景无雾和有雾时图像RGB(Red-green-blue)三通道和HSV(Hue-saturation-value)三通道的变化,提出一种基于幂指数拉伸的去雾算法.首先将图像从RGB变换到HSV空间,将饱和度分量和亮度分量分别作1~3的幂指数拉伸和调整,将拉伸变换后分量生成HSV图像再变换到RGB空间,生成增强后的去雾图像.以饱和度均值、亮度指标、信息熵和对比度作为去雾评价的指标,确定最优的拉伸幂指数组合.然后使用最优幂指数完成去雾处理,同时根据图像饱和变化的阈值或时间间隔长度决定是否重新寻找最优
针对当前人眼定位相关算法任务单一、且在多种干扰因素影响下(如光照、眼镜、遮挡)性能下降的问题,提出了可同时检测人眼感兴趣区域、识别人眼多种属性及定位关键点的轻量型神经网络MEL-YOLO.将YOLOV3算法与改进的DS-sandglass模块结合,在关键点回归分支应用去归一化的编解码方法提高网络定位宽度,并且在损失函数引入完全交并比(Complete intersection-over-union,CIoU)和均方误差(Mean square error,MSE),使得网络整体性能提升.MEL-YOLO算